1,437
Views
18
CrossRef citations to date
0
Altmetric
Research Paper

Distinct defensive activity of phenolics and phenylpropanoid pathway genes in different cotton varieties toward chewing pests

, , ORCID Icon, , ORCID Icon & ORCID Icon
Article: 1747689 | Received 23 Nov 2019, Accepted 22 Mar 2020, Published online: 14 Apr 2020

References

  • Matthews GA, Tunstall JP. Insect pests of cotton. Wallingford: CAB International, University Press; 1994.
  • Matthews M. Heliothine moths of Australia. A guide to pest bollworms and related noctuid groups. Melbourne: CSIRO Publishing; 1999.
  • Chidawanyika F, Mudavanhu P, Nyamukondiwa C. Biologically based methods for pest management in agriculture under changing climates: challenges and future directions. Insects. 2012;3:1–10. doi:10.3390/insects3041171.
  • Alphey N, Bonsall MB. Genetics-based methods for agricultural insect pest management. Agric Entomol. 2018;20:131–140. doi:10.1111/afe.12241.
  • Lombardo L, Coppola G, Zelasco S. New technologies for insect-resistant and herbicide-tolerant plants. Trends Biotechnol. 2016;34:49–57. doi:10.1016/j.tibtech.2015.10.006.
  • Gatehouse JA. Biotechnological prospects for engineering insect-resistant plants. Plant Physiol. 2008;146:881–887. doi:10.1104/pp.107.111096.
  • Kant MR, Jonckheere W, Knegt B, Lemos F, Liu J, Schimmel BCJ, Villarroel CA, Ataide LMS, Dermauw W, Glas JJ, et al. Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities. Ann Bot. 2015;115(7):1015–1051. doi:10.1093/aob/mcv054.
  • Chaudhary B. Plant domestication and resistance to herbivory. Int J Plant Genomics. 2013;2013:572784. doi:10.1155/2013/572784.
  • Thompson JN. Coevolution: the geographic mosaic of coevolutionary arms races. Curr Biol. 2005;15:R992–4. doi:10.1016/j.cub.2005.11.046.
  • Broekgaarden C, Snoeren TA, Dicke M, Vosman B. Exploiting natural variation to identify insect-resistance genes. Plant Biotechnol J. 2011;9:819–825. doi:10.1111/j.1467-7652.2011.00635.x.
  • Tosh CR, Powell G, Hardie J. Decision making by generalist and specialist aphids with the same genotype. J Insect Physiol. 2003;49:659–669. doi:10.1016/S0022-1910(03)00066-0.
  • Vagiri M, Johansson E, Rumpunen K. Phenolic compounds in black currant leaves – an interaction between the plant and foliar diseases? J Plant Interact. 2017;12:193–199. doi:10.1080/17429145.2017.1316524.
  • Lattanzio V, Lattanzio VM, Cardinali A. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochem. 2006;23–67.
  • Bell AA, Stipanovic RD, Howell CR, Fryxell PA. Antimicrobial terpenoids of gossypium: hemigossypol, 6-methoxyhemigossypol and 6-deoxyhemigossypol. Phytochemistry. 1975;14:225–231. doi:10.1016/0031-9422(75)85044-8.
  • Dowd MK, Pelitire SM. Isolation of 6-methoxy gossypol and 6,6ʹ-dimethoxy gossypol from Gossypium barbadense Sea Island cotton. J Agric Food Chem. 2006;54:3265–3270. doi:10.1021/jf060027n.
  • Treutter D. Significance of flavonoids in plant resistance: a review. Environ Chem Lett. 2006;4:147. doi:10.1007/s10311-006-0068-8.
  • Vogt T. Phenylpropanoid biosynthesis. Mol Plant. 2010;3:2–20. doi:10.1093/mp/ssp106.
  • Yuan D, Jin L, Xu L, Tu L, Liu L, Zhu L, Long L, Zhang X. Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. J Exp Bot. 2011;62:5607–5621. doi:10.1093/jxb/err245.
  • Naoumkina MA, Zhao Q, Gallego-Giraldo L, Dai X, Zhao PX, Dixon RA. Genome-wide analysis of phenylpropanoid defence pathways. Mol Plant Pathol. 2010;11:829–846. doi:10.1111/j.1364-3703.2010.00648.x.
  • Dixit G, Praveen A, Tripathi T, Yadav VK, Verma PC. Herbivore-responsive cotton phenolics and their impact on insect performance and biochemistry. J Asia Pac Entomol. 2017;20:341–351. doi:10.1016/j.aspen.2017.02.002.
  • Srivastava R, Rai KM, Srivastava M, Kumar V, Pandey B, Singh SP, Bag SK, Singh BD, Tuli R, Sawant SV. Distinct Role of Core Promoter Architecture in Regulation of Light-Mediated Responses in Plant Genes. Mol Plant. 2014;7:626–641. doi:10.1093/mp/sst146.
  • Srivastava R, Srivastava R, Singh UM. Understanding the patterns of gene expression during climate change. Climate Change Effect on Crop Productivity. Boca Raton, Florida: CRC Press, Taylor & Francis Group; 2014. p. 279–328. Print ISBN: 978-1-4822-2920-2 eBook ISBN: 978-1-4822-2921-9. doi:10.1201/b17684-14.
  • Huot B, Yao J, Montgomery BL, He SY. Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol Plant. 2014;7:1267–1287. doi:10.1093/mp/ssu049.
  • Fu R, Martin C, Zhang Y. Next-generation plant metabolic engineering, inspired by an ancient Chinese irrigation system. Mol Plant. 2018;11:47–57. doi:10.1016/j.molp.2017.09.002.
  • Pandey B, Prakash P, Verma PC, Srivastava R. Regulated gene expression by synthetic modulation of the promoter architecture in plants. Current developments in biotechnology and bioengineering: synthetic biology. Cell Eng Bioprocess Technol. 2019;235–255.
  • Abeynayake SW, Panter S, Mouradov A, Spangenberg G. A high-resolution method for the localization of proanthocyanidins in plant tissues. Plant Methods. 2011;7:13. doi:10.1186/1746-4811-7-13.
  • Verma PC, Trivedi I, Singh H, Shukla AK, Kumar M, Upadhyay SK, Pandey P, Hans A, Singh P. Efficient production of gossypol from hairy root cultures of cotton (Gossypium hirsutum L.). Curr Pharm Biotechnol. 2009;10:691–700. doi:10.2174/138920109789542048.
  • Gerhardt P, Murray R, Wood WA, Krieg NR. Methods for general and molecular bacteriology. Washington DC (United States): American Society for Microbiology; 1994.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–275.
  • Lege KE, Cothren JT, Smith CW. Phenolic acid and condensed tannin concentrations of six cotton genotypes. Environ Exp Bot. 1995;35:241–249. doi:10.1016/0098-8472(94)00051-6.
  • Porter LJ, Hrstich LN, Chan BG. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry. 1985;25:223–230. doi:10.1016/S0031-9422(00)94533-3.
  • Ranjan A, Nigam D, Asif MH, Singh R, Ranjan S, Mantri S, Pandey N, Trivedi I, Rai K, Jena SN, et al. Genome wide expression profiling of two accession of G. herbaceum L. in response to drought. BMC Genomics. 2012;13:94. doi:10.1186/1471-2164-13-94.
  • Pandey V, Srivastava R, Akhtar N, Mishra J, Mishra P, Verma PC. Expression of Withania somnifera steroidal glucosyltransferase gene enhances withanolide content in hairy roots. Plant Mol Bio Rep. 2016;34:681–689. doi:10.1007/s11105-015-0955-x.
  • Lewis WJ, van Lenteren JC, Phatak SC, Tumlinson JH 3rd. A total system approach to sustainable pest management. Proc Natl Acad Sci U S A. 1997;94:12243–12248. doi:10.1073/pnas.94.23.12243.
  • Trapero C, Wilson IW, Stiller WN, Wilson LJ. Enhancing integrated pest management in GM cotton systems using host plant resistance. Front Plant Sci. 2016;7:500. doi:10.3389/fpls.2016.00500.
  • Alagar M, Suresh S, Samiyappan R, Saravanakumar D. Reaction of resistant and susceptible rice genotypes against brown planthopper (Nilaparvata lugens). Phytoparasitica. 2007;35:346. doi:10.1007/BF02980697.
  • Weigand F, Koster J, Weltzien HC, Barz W. Accumulation of phytoalexins and isoflavone glucosides in a resistant and a susceptible cultivar of Cicer arietinum during infection with Ascochyta rabiei. J Phytopathol. 1986;115:214–221. doi:10.1111/j.1439-0434.1986.tb00879.x.
  • Awmack CS, Leather SR. Host plant quality and fecundity in herbivorous insects. Annu Rev Entomol. 2002;47:817–844. doi:10.1146/annurev.ento.47.091201.145300.
  • Lawrence PK, Koundal KR. Plant protease inhibitors in control of phytophagous insects. Electron J Biotechnol. 2002;5:5–6. doi:10.2225/vol5-issue1-fulltext-3.
  • Ananthakrishnan TN, Gopichandran R, Gurusubramanian G. Influence of chemical profiles of host plants on the infestation diversity ofRetithrips syriacus. J Biosci. 1992;17:483–489. doi:10.1007/BF02720103.
  • Nix A, Paull C, Colgrave M. Flavonoid profile of the cotton plant, gossypium hirsutum: a review. Plants (Basel). 2017;6:E43. doi:10.3390/plants6040043.
  • Jenkins JN, Hedin PA, Parrott WL. Relationships of glands, cotton square terpenoid aldehydes, and other allelochemicals to larval growth of heliothis virescens (Lepidoptera: noctuidae). J Econ Entomol. 1992;85:359–364. doi:10.1093/jee/85.2.359.
  • Bell AA, Stipanovic RD, O’Brien DH, Fryxell PA. Sesquiterpenoid aldehyde quinones and derivatives in pigment glands of Gossypium. Phytochemistry. 1978;17:1297–1305. doi:10.1016/S0031-9422(00)94578-3.
  • Bell AA. Physiology of secondary products. In: JR MAUNEY, JM STEWART, editors. Cotton Physiology- a treatise: section V, phenolic caids. The cotton Foundation. Netherlands: Springer. 1986; 187–205.
  • Mace ME, Bell AA, Stipanovic RD. Histochemistry and identification of flavanols in Verticillium wilt-resistant and -susceptible cottons. Physiol Plant Pathol. 1978;13:143–149. doi:10.1016/0048-4059(78)90027-9.
  • Chrzanowski G, Leszczyński B. Induced accumulation of phenolic acids in winter triticale (Triticosecale Wittm.) under insects feeding. Herba Polonica. 2008;58:33–40.
  • Punithavalli M, Muthukrishnan NM, Rajkuma MB. Defensive responses of rice genotypes for resistance against rice leaffolder Cnaphalocrocis medinalis. Rice Sci. 2013;20:363–370. doi:10.1016/S1672-6308(13)60149-3.
  • Donaldson JR, Stevens MT, Barnhill HR, Lindroth RL. Age-related shifts in leaf chemistry of clonal aspen (Populus tremuloides). J Chem Ecol. 2006;32:1415–1429. doi:10.1007/s10886-006-9059-2.
  • Andersen EJ, Ali S, Byamukama E, Yen Y, Nepal MP. Disease resistance mechanisms in plants. Genes (Basel). 2018;9(7):339.
  • Thomma BP, Penninckx IA, Broekaert WF, Cammue BP. The complexity of disease signaling in Arabidopsis. Curr Opin Immunol. 2001;13:63–68. doi:10.1016/S0952-7915(00)00183-7.
  • Kliebenstein DJ. Plant defense compounds: systems approaches to metabolic analysis. Annu Rev Phytopathol. 2012;50:155–173. doi:10.1146/annurev-phyto-081211-172950.
  • Li B, Gaudinier A, Tang M, Taylor-Teeples M, Nham NT, Ghaffari C, Benson DS, Steinmann M, Gray JA, Brady SM, et al. Promoter-based integration in plant defense regulation. Plant Physiol. 2014;166:1803–1820. doi:10.1104/pp.114.248716.
  • Ding H, Lamb RJ, Ames N. Inducible production of phenolic acids in wheat and antibiotic resistance to sitodiplosis mosellana. J Chem Ecol. 2000;26:969–985. doi:10.1023/A:1005412309735.
  • Santiago R, Malvar RA, Baamonde MD, Revilla P, Souto XC. Free phenols in maize pith and their relationship with resistance to Sesamia nonagrioides (Lepidoptera: noctuidae) attack. J Econ Entomol. 2005;98:1349–1356. doi:10.1603/0022-0493-98.4.1349.
  • Cramer CL, Edwards K, Dron M, Liang X, Dildine SL, Bolwell GP, Dixon RA, Lamb CJ, Schuch W. Phenylalanine ammonia-lyase gene organization and structure. Plant Mol Biol. 1989;12:367–383. doi:10.1007/BF00017577.
  • Duan C, Yu J, Bai J, Zhu Z, Wang X. Induced defense responses in rice plants against small brown planthopper infestation. Crop J. 2014;2:55–62. doi:10.1016/j.cj.2013.12.001.
  • Campos-Vargas R, Saltveit ME. Involvement of putative chemical wound signals in the induction of phenolic metabolism in wounded lettuce. Physiol Plant. 2002;114:73–84. doi:10.1034/j.1399-3054.2002.1140111.x.
  • Zhao LY, Chen JL, Cheng DF, Sun JR, Liu Y, Tian Z. Biochemical and molecular characterizations of Sitobion avenae-induced wheat defense responses. Crop Prot. 2009;28:435–442. doi:10.1016/j.cropro.2009.01.005.
  • Chakraborty U, Chakraborty N. Impact of environmental factors on infestation of tea leaves byHelopeltis theivora, and associated changes in flavonoid flavor components and enzyme activities. Phytoparasitica. 2005;33:88–96. doi:10.1007/BF02980930.
  • Usha Rani P, Pratyusha S. Defensive role of Gossypium hirsutum L. anti-oxidative enzymes and phenolic acids in response to Spodoptera litura F. feeding. J Asia Pac Entomol. 2013;16:131–136. doi:10.1016/j.aspen.2013.01.001.
  • Johnson ET, Dowd PF. Differentially enhanced insect resistance, at a cost, in Arabidopsis thaliana constitutively expressing a transcription factor of defensive metabolites. J Agric Food Chem. 2004;52:5135–5138. doi:10.1021/jf0308049.
  • Dubey NK, Goel R, Ranjan A, Idris A, Singh SK, Bag SK, Chandrashekar K, Pandey KD, Singh PK, Sawant SV, et al. Comparative transcriptome analysis of Gossypium hirsutum L. in response to sap sucking insects: aphid and whitefly. BMC Genomics. 2013;14:241. doi:10.1186/1471-2164-14-241.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.