1,090
Views
8
CrossRef citations to date
0
Altmetric
Research Paper

Genome-wide identification and expression analysis of SABATH methyltransferases in tea plant (Camellia sinensis): insights into their roles in plant defense responses

, ORCID Icon, , , , , & show all
Article: 1804684 | Received 05 Jul 2020, Accepted 22 Jul 2020, Published online: 12 Aug 2020

References

  • Wang Y-C, Qian W-J, Li -N-N, Hao X-Y, Wang L, Xiao B, Wang X-C, Yang Y-J. Metabolic changes of caffeine in tea plant (Camellia sinensis (L.) O. Kuntze) as defense response to colletotrichum fructicola. J Agric Food Chem. 2016;64(35):1–14. doi:10.1021/acs.jafc.6b02044.
  • Boba A, Kostyn K, Kostyn A, Wojtasik W, Dziadas M, Preisner M, Szopa J, Kulma A. Methyl salicylate level increase in flax after Fusarium oxysporum infection is associated with phenylpropanoid pathway activation. Front Plant Sci. 2016;7:1951.
  • Zhao N, Ferrer JL, Ross J, Guan J, Yang Y, Pichersky E, Noel JP, Chen F. Structural, biochemical, and phylogenetic analyses suggest that indole-3-acetic acid methyltransferase is an evolutionarily ancient member of the SABATH family. Plant Physiol. 2008;146:455–467. doi:10.1104/pp.107.110049.
  • Chen ZM. Chemical ecology of tea pests. China: Shanghai Science and Technology Press; 2013.
  • Mallinger RE, Hogg DB, Gratton C. Methyl salicylate attracts natural enemies and reduces populations of soybean aphids (Hemiptera: Aphididae) in soybean agroecosystems. J Econ Entomol. 2011;104:115–124. doi:10.1603/EC10253.
  • Groux R, Hilfiker O, Gouhier-Darimont C, Penaflor MF, Erb M, Reymond P. Role of methyl salicylate on oviposition deterrence in Arabidopsis thaliana. J Chem Ecol. 2014;40:754–759. doi:10.1007/s10886-014-0470-9.
  • Glowacz M, Roets N, Sivakumar D. Control of anthracnose disease via increased activity of defence related enzymes in ‘Hass’ avocado fruit treated with methyl jasmonate and methyl salicylate. Food Chem. 2017;234:163–167. doi:10.1016/j.foodchem.2017.04.063.
  • Zhang X, Min D, Li F, Ji N, Meng D, Li L. Synergistic effects of i-arginine and methyl salicylate on alleviating postharvest disease caused by Botrytis cinerea in tomato Fruit. J Agric Food Chem. 2017;65:4890–4896. doi:10.1021/acs.jafc.7b00395.
  • Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science. 2007;318:113–116. doi:10.1126/science.1147113.
  • Rowen E, Gutensohn M, Dudareva N, Kaplan I. Carnivore attractant or plant elicitor? Multifunctional roles of methyl salicylate lures in tomato defense. J Chem Ecol. 2017;43:573–585. doi:10.1007/s10886-017-0856-6.
  • Zhu F, Xi DH, Yuan S, Xu F, Zhang DW, Lin HH. Salicylic acid and jasmonic acid are essential for systemic resistance against tobacco mosaic virus in Nicotiana benthamiana. Mol Plant Microbe Interact. 2014;27:567–577. doi:10.1094/MPMI-11-13-0349-R.
  • Han SJ, Pan C, Han BY. Changes in volatiles of tea shoots damaged by tea green leafhoppers and their attraction to Schizophragma parvula Ogloblin. Chin J Biol Control. 2016;32:142–148.
  • Chen F, D’Auria JC, Tholl D, Ross JR, Pichersky E. An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense. Plant J. 2004;36:577–588. doi:10.1046/j.1365-313X.2003.01902.x.
  • Yang Y, Yuan JS, Ross J, Noel JP, Pichersky E, Chen F. An Arabidopsis thaliana methyltransferase capable of methylating farnesoic acid. Arch Biochem Biophys. 2006;448:123–132. doi:10.1016/j.abb.2005.08.006.
  • D’Auria JC, Chen F, Pichersky E. The SABATH family of MTS in Arabidopsis thaliana and other plant species. Recent Adv Phytochem. 2003;37:95–125.
  • Varbanova M, Yamaguchi S, Yang Y, McKelvey K, Hanada A, Borochov R, Yu F, Jikumaru Y, Ross J, Cortes D, et al. Methylation of Gibberellins by Arabidopsis GAMT1 and GAMT2. Plant Cell. 2007;19:32–45. doi:10.1105/tpc.106.044602.
  • Kapteyn J, Qualley AV, Xie Z, Fridman E, Dudareva N, Gang DR. Evolution of Cinnamate/p-coumarate carboxyl methyltransferases and their role in the biosynthesis of methylcinnamate. Plant Cell. 2007;19:3212–3229. doi:10.1105/tpc.107.054155.
  • Kollner TG, Lenk C, Zhao N, Seidl-Adams I, Gershenzon J, Chen F, Degenhardt J. Herbivore-induced SABATH methyltransferases of maize that methylate anthranilic acid using S -adenosyl-l-methionine. Plant Physiol. 2010;153:1795–1807. doi:10.1104/pp.110.158360.
  • Wang H, Sun M, Li LL, Xie XH, Zhang QX. Cloning and characterization of a benzoic acid/salicylic acid carboxyl methyltransferase gene involved in floral scent production from lily (Lilium ‘Yelloween’). Genet Mol Res. 2015;14:14510–14521. doi:10.4238/2015.November.18.14.
  • Xu R, Song F, Zheng Z. OsBISAMT1, a gene encoding S-adenosyl-L-methionine: salicylic acid carboxyl methyltransferase, is differentially expressed in rice defense responses. Mol Biol Rep. 2006;33:223–231. doi:10.1007/s11033-005-4823-x.
  • Yuan JS, Kollner TG, Wiggins G, Grant J, Degenhardt J, Chen F. Molecular and genomic basis of volatile-mediated indirect defense against insects in rice. Plant J. 2008;55:491–503. doi:10.1111/j.1365-313X.2008.03524.x.
  • Qi J, Li J, Han X, Li R, Wu J, Yu H, Hu L, Xiao Y, Lu J, Lou Y. Jasmonic acid carboxyl methyltransferase regulates development and herbivory-induced defense response in rice. J Integr Plant Biol. 2016;58:564–576. doi:10.1111/jipb.12436.
  • Zhao N, Ferrer JL, Moon HS, Kapteyn J, Zhuang X, Hasebe M, Neal Stewart C, Gang DR, Chen F. A SABATH Methyltransferase from the moss Physcomitrella patens catalyzes S-methylation of thiols and has a role in detoxification. Phytochemistry. 2012;81:31–41. doi:10.1016/j.phytochem.2012.06.011.
  • Kim EH, Kim YS, Park SH, Koo YJ, Choi YD, Chung YY, Lee I-J, Kim J-K. Methyl jasmonate reduces grain yield by mediating stress signals to alter spikelet development in rice. Plant Physiol. 2009;149:1751–1760. doi:10.1104/pp.108.134684.
  • Zhao N, Guan J, Ferrer JL, Engle N, Chern M, Ronald P, Tschaplinski TJ, Chen F. Biosynthesis and emission of insect-induced methyl salicylate and methyl benzoate from rice. Plant Physiol Biochem. 2010;48:279–287. doi:10.1016/j.plaphy.2010.01.023.
  • Shi J, Ma C, Qi D, Lv H, Yang T, Peng Q, Chen Z, Lin Z. Transcriptional responses and flavor volatiles biosynthesis in methyl jasmonate-treated tea leaves. BMC Plant Biol. 2015;15:233. doi:10.1186/s12870-015-0609-z.
  • Deng -W-W, Wang R, Yang T, Jiang L, Zhang -Z-Z. Functional characterization of salicylic acid carboxyl methyltransferase from Camellia sinensis, providing the aroma compound of methyl salicylate during the withering process of white tea. J Agric Food Chem. 2017;65:11036–11045. doi:10.1021/acs.jafc.7b04575.
  • Li X, Zhang L-P, Zhang L, Yan P, Ahammed G, Han W-Y. Methyl salicylate enhances flavonoid biosynthesis in tea leaves by stimulating the phenylpropanoid pathway. Molecules. 2019;24:362. doi:10.3390/molecules24020362.
  • Feng Z, Li M, Li Y, Wan X, Yang X. Characterization of the orchid-like aroma contributors in selected premium tea leaves. Food Res Int. 2020;129:108841. doi:10.1016/j.foodres.2019.108841.
  • Xia E-H, Zhang H-B, Sheng J, Li K, Zhang Q-J, Kim C, Zhang Y, Liu Y, Zhu T, Li W, et al. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Mol Plant. 2017;10:866–877. doi:10.1016/j.molp.2017.04.002.
  • Wei C, Yang H, Wang S, Zhao J, Liu C, Gao L, Xia E, Lu Y, Tai Y, She G, et al. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proc Natl Acad Sci U S A. 2018;115(18):E4151–E8. doi:10.1073/pnas.1719622115.
  • Xia E-H, Li F-D, Tong W, Li P-H, Wu Q, Zhao H-J, Ge R-H, Li R-P, Li -Y-Y, Zhang -Z-Z, et al. Tea plant information archive: a comprehensive genomics and bioinformatics platform for tea plant. Plant Biotechnol J. 2019;17(10):1938–1953. doi:10.1111/pbi.13111.
  • Chou KC, Shen HB. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One. 2010;5:e11335. doi:10.1371/journal.pone.0011335.
  • Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics. 2015;31:1296–1297. doi:10.1093/bioinformatics/btu817.
  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R. TBtools - an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13:1194–1202. doi:10.1016/j.molp.2020.06.009.
  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–321. doi:10.1093/sysbio/syq010.
  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002;30:325–327. doi:10.1093/nar/30.1.325.
  • Xu Q, He Y, Yan X, Zhao S, Zhu J, Wei C. Unraveling a crosstalk regulatory network of temporal aroma accumulation in tea plant (Camellia sinensis) leaves by integration of metabolomics and transcriptomics. Environ Exp Bot. 2018;149:81–94. doi:10.1016/j.envexpbot.2018.02.005.
  • Yang H, Wang Y, Li L, Li F, He Y, Wu J, Wei C. Transcriptomic and Phytochemical Analyses Reveal Root-Mediated Resource-Based Defense Response to Leaf Herbivory byEctropis oblique in Tea Plant (Camellia sinensis). J Agric Food Chem. 2019;67:5465–5476. doi:10.1021/acs.jafc.9b00195.
  • Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11:1650–1667. doi:10.1038/nprot.2016.095.
  • Wu Z-J, Tian C, Jiang Q, Li X-H, Zhuang J. Selection of suitable reference genes for qRT-PCR normalization during leaf development and hormonal stimuli in tea plant (Camellia sinensis). Sci Rep. 2016;6:19748. doi:10.1038/srep19748.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi:10.1006/meth.2001.1262.
  • Koo YJ, Kim MA, Kim EH, Song JT, Jung C, Moon JK, Kim J-H, Seo HS, Song SI, Kim J-K, et al. Overexpression of salicylic acid carboxyl methyltransferase reduces salicylic acid-mediated pathogen resistance in Arabidopsis thaliana. Plant Mol Biol. 2007;64:1–15. doi:10.1007/s11103-006-9123-x.
  • Zhao N, Boyle B, Duval I, Ferrer JL, Lin H, Seguin A, Mackay J, Chen F. SABATH methyltransferases from white spruce (Picea glauca): gene cloning, functional characterization and structural analysis. Tree Physiol. 2009;29:947–957. doi:10.1093/treephys/tpp023.
  • Qu L, Li S, Xing S. Methylation of phytohormones by the SABATH methyltransferases. Chin Sci Bull. 2010;55:2211–2218. doi:10.1007/s11434-010-3245-x.
  • Zhao N, Yao J, Chaiprasongsuk M, Li G, Guan J, Tschaplinski TJ, Guo H, Chen F. Molecular and biochemical characterization of the jasmonic acid methyltransferase gene from black cottonwood (Populus trichocarpa). Phytochemistry. 2013;94:74–81. doi:10.1016/j.phytochem.2013.06.014.
  • Han XM, Yang Q, Liu YJ, Yang ZL, Wang XR, Zeng QY, Yang H-L. Evolution and function of the Populus SABATH family reveal that a single amino acid change results in a substrate switch. Plant Cell Physiol. 2018;59:392–403. doi:10.1093/pcp/pcx198.
  • Wang B, Wang S, Wang Z. Genome-wide comprehensive analysis the molecular phylogenetic evaluation and tissue-specific expression of SABATH gene family in Salvia miltiorrhiza. Genes (Basel). 2017;8:365. doi:10.3390/genes8120365.
  • Chaiprasongsuk M, Zhang C, Qian P, Chen X, Li G, Trigiano RN, Guo H, Chen F. Biochemical characterization in Norway spruce (Picea abies) of SABATH methyltransferases that methylate phytohormones. Phytochemistry. 2018;149:146–154. doi:10.1016/j.phytochem.2018.02.010.
  • Zhang L, Chen F, Zhang X, Li Z, Zhao Y, Lohaus R, Chang X, Dong W, Ho SYW, Liu X, et al. The water lily genome and the early evolution of flowering plants. Nature. 2019;577:79–84. doi:10.1038/s41586-019-1852-5.
  • Zubieta C, Ross JR, Koscheski P, Yang Y, Pichersky E, Noel JP. Structural basis for substrate recognition in the salicylic acid carboxyl methyltransferase family. Plant Cell. 2003;15:1704–1716. doi:10.1105/tpc.014548.
  • Huang R, Hippauf F, Rohrbeck D, Haustein M, Wenke K, Feike J, Sorrelle N, Piechulla B, Barkman TJ. Enzyme functional evolution through improved catalysis of ancestrally nonpreferred substrates. Proc Natl Acad Sci U S A. 2012;109:2966–2971. doi:10.1073/pnas.1019605109.
  • Huang R, O’Donnell AJ, Barboline JJ, Barkman TJ. Convergent evolution of caffeine in plants by co-option of exapted ancestral enzymes. Proc Natl Acad Sci U S A. 2016;113:10613–10618. doi:10.1073/pnas.1602575113.
  • Yang H, Kim HS, Jeong EJ, Khiev P, Chin YW, Sung SH. Plant-derived juvenile hormone III analogues and other sesquiterpenes from the stem bark of Cananga latifolia. Phytochemistry. 2013;94:277–283. doi:10.1016/j.phytochem.2013.06.010.
  • Ament K, Kant MR, Sabelis MW, Haring MA, Schuurink RC. Jasmonic acid is a key regulator of spider mite-induced volatile terpenoid and methyl salicylate emission in tomato. Plant Physiol. 2004;135:2025–2037. doi:10.1104/pp.104.048694.
  • Kobayashi K. Plant methyl salicylate induces defense responses in the rhizobacterium Bacillus subtilis. Environ Microbiol. 2015;17:1365–1376. doi:10.1111/1462-2920.12613.
  • Kalaivani K, Kalaiselvi MM, Senthil-Nathan S. Effect of methyl salicylate (MeSA), an elicitor on growth, physiology and pathology of resistant and susceptible rice varieties. Sci Rep. 2016;6:34498. doi:10.1038/srep34498.
  • Lin Y, Qasim M, Hussain M, Akutse KS, Avery PB, Dash CK, Wang L. The herbivore-induced plant volatiles methyl salicylate and menthol positively affect growth and pathogenicity of entomopathogenic fungi. Sci Rep. 2017;7:40494. doi:10.1038/srep40494.
  • Ding P, Ding Y. Stories of salicylic acid: a plant defense hormone. Trends Plant Sci. 2020;25:549–565. doi:10.1016/j.tplants.2020.01.004.
  • Tieman D, Zeigler M, Schmelz E, Taylor MG, Rushing S, Jones JB, Klee HJ. Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate. Plant J. 2010;62:113–123. doi:10.1111/j.1365-313X.2010.04128.x.
  • Seo HS, Song JT, Cheong JJ, Lee Y-H, Lee Y-W, Hwang I, Lee JS, Choi YD. Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. Proc Natl Acad Sci U S A. 2001;98:4788–4793. doi:10.1073/pnas.081557298.
  • Lin J, Mazarei M, Zhao N, Zhu JJ, Zhuang X, Liu W, Pantalone VR, Arelli PR, Stewart CN, Chen F, et al. Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode. Plant Biotechnol J. 2013;11:1135–1145. doi:10.1111/pbi.12108.
  • Jiang H, Xiao Y, Zhu S. Genome-wide identification, systematic analysis and characterization of SRO family genes in maize (Zea mays L.). Acta Physiol Plant. 2018;40. doi:10.1007/s11738-018-2738-0.
  • Al-Zahrani W, Bafeel SO, El-Zohri M. Jasmonates mediate plant defense responses to Spodoptera exigua herbivory in tomato and maize foliage. Plant Signal Behav. 2020;15:1746898. doi:10.1080/15592324.2020.1746898.
  • Wu J, Wang L, Baldwin IT. Methyl jasmonate-elicited herbivore resistance: does MeJA function as a signal without being hydrolyzed to JA? Planta. 2008;227:1161–1168. doi:10.1007/s00425-008-0690-8.
  • Aoki K, Ogata Y, Shibata D. Approaches for extracting practical information from gene co-expression networks in plant biology. Plant Cell Physiol. 2007;48:381–390. doi:10.1093/pcp/pcm013.
  • Liu Y, Hou H, Jiang X, Wang P, Dai X, Chen W, Gao L, Xia T. A WD40 repeat protein from Camellia sinensis regulates anthocyanin and proanthocyanidin accumulation through the formation of MYB–bHLH–WD40 ternary complexes. Int J Mol Sci. 2018;19:1686. doi:10.3390/ijms19061686.
  • Bulgakov VP, Avramenko TV, Tsitsiashvili GS. Critical analysis of protein signaling networks involved in the regulation of plant secondary metabolism: focus on anthocyanins. Crit Rev Biotechnol. 2017;37:685–700. doi:10.3109/07388551.2016.1141391.
  • Yang Z, Li Y, Gao F, Jin W, Li S, Kimani S, Yang S, Bao T, Gao X, Wang L, et al. MYB21 interacts with MYC2 to control the expression of terpene synthase genes in flowers of F. hybrida and A. thaliana. J Exp Bot. 2020;71:4140–4158. doi:10.1093/jxb/eraa184.
  • Li X, Xu Y, Shen S, Yin X, Klee H, Zhang B, Chen K. Transcription factor CitERF71 activates the terpene synthase gene CitTPS16 involved in the synthesis of E-geraniol in sweet orange fruit. J Exp Bot. 2017;68:4929–4938. doi:10.1093/jxb/erx316.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.