841
Views
3
CrossRef citations to date
0
Altmetric
Perspectives

Vacuolar accumulation and colocalization is not a proper criterion for cytoplasmic soluble proteins undergoing selective autophagy

&
Article: 1932319 | Received 28 Mar 2021, Accepted 17 May 2021, Published online: 27 Jun 2021

References

  • Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011. 147(4):1–7. doi:10.1016/j.cell.2011.10.026.
  • Johansen T, Lamark T. Selective autophagy mediated by autophagic adapter proteins. Autophagy. 2011. 7(3):279–296. doi:10.4161/auto.7.3.14487.
  • Gatica D, Lahiri V, Klionsky DJ. Cargo recognition and degradation by selective autophagy. Nat Cell Biol. 2018. 20(3):233–242. doi:10.1038/s41556-018-0037-z.
  • Noda NN, Ohsumi Y, Inagaki F. Atg8-family interacting motif crucial for selective autophagy. FEBS Lett. 2010. 584(7):1379–1385. doi:10.1016/j.febslet.2010.01.018.
  • Birgisdottir ÅB, Lamark T, Johansen T. The LIR motif-crucial for selective autophagy. J Cell Sci. 2013. 126(15):3237–3247. doi:10.1242/jcs.126128.
  • Svenning S, Lamark T, Krause K, Johansen T. 2011. Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1. Autophagy. 7(9):993–1010. doi:10.4161/auto.7.9.16389.
  • Ji C, Zhou J, Guo R, Lin Y, Kung C-H, Hu S, Ng WY, Zhuang X, Jiang L. AtNBR1 is a selective autophagic receptor for AtExo70E2 in Arabidopsis. Plant Physiol. 2020. 184(2):777–791. doi:10.1104/pp.20.00470.
  • Hu S, Ye H, Cui Y, Jiang L. AtSec62 is critical for plant development and is involved in ER-phagy in Arabidopsis thaliana. J Integr Plant Biol. 2020. 62(2):181–200. doi:10.1111/jipb.12872.
  • Stephani M, Picchianti L, Gajic A, Beveridge R, Skarwan E, Sanchez De Medina Hernandez V, Mohseni A, Clavel M, Zeng Y, Naumann C, et al. 2020. A cross-kingdom conserved ER-phagy receptor maintains endoplasmic reticulum homeostasis during stress. Elife. 9:e58396. doi:10.7554/eLife.58396.
  • Nolan TM, Brennan B, Yang M, Chen J, Zhang M, Li Z, Wang X, Bassham DC, Walley J, Yin Y, et al. 2017. Selective autophagy of BES1 mediated by DSK2 balances plant growth and survival. Dev Cell. 41(1):33–46. doi:10.1016/j.devcel.2017.03.013.
  • Marshall RS, Li F, Gemperline DC, Book A, Vierstra R. Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in Arabidopsis. Mol Cell. 2015. 58(6):1053–1066. doi:10.1016/j.molcel.2015.04.023.
  • Michaeli S, Honig A, Levanony H, Peled-Zehavi H, Galili G. Arabidopsis ATG8-INTERACTING PROTEIN1 Is Involved in Autophagy-Dependent Vesicular Trafficking of Plastid Proteins to the Vacuole. Plant Cell. 2014. 26(10):4084–4101. doi:10.1105/tpc.114.129999.
  • Sjøgaard IMZ, Bressendorff S, Prestel A, Kausika S, Oksbjerg E, Kragelund BB, Brodersen P. 2019. The transmembrane autophagy cargo receptors ATI1 and ATI2 interact with ATG8 through intrinsically disordered regions with distinct biophysical properties. Biochem J. 476(3):449–465. doi:10.1042/BCJ20180748.
  • Wu J, Michaeli S, Picchianti L, Dagdas Y, Galili G, Peled-Zehavi H. 2021. ATI1 (ATG8-interacting protein 1) and ATI2 define a plant starvation-induced reticulophagy pathway and serve as MSBP1/MAPR5 cargo receptors. Autophagy. doi:10.1080/15548627.2021.1872886.
  • Brillada C, Teh K, Ditengo FA, Lee CW, Klecker T, Saeed B, Furlan G, Zietz M, Hause G, Eschen-Lippold L, et al. 2020. Exocyst subunit Exo70B2 is linked to immune signalling and autophagy. Plant Cell. 33(2):404–419. doi: 10.1093/plcell/koaa022.
  • Acheampong AK, Shanks C, Cheng CY, Schaller GE, Dagdas Y, Kieber JJ. 2020. EXO70D isoforms mediate selective autophagic degradation of type-A ARR proteins to regulate cytokinin sensitivity. P Natl Acad Sci. 117(43):27034–27043. doi:10.1073/pnas.2013161117.
  • Yang F, Kimberlin AN, Elowsky CG, Liu Y, Gonzalez-Solis A, Cahoon EB, Alfano JR. 2019. A plant immune receptor degraded by selective autophagy. Mol Plant. 12(1):113–123. doi:10.1016/j.molp.2018.11.011.
  • Zhan N, Wang C, Chen L, Yang H, Feng J, Gong X, Ren B, Wu R, Mu J, Li Y, et al. 2018. S-nitrosylation targets GSNO reductase for selective autophagy during hypoxia responses in plants. Mol Cell. 71(1):142–154. doi:10.1016/j.molcel.2018.05.024.
  • Vanhee C, Zapotoczny G, Masquelier D, Ghislain M, Batoko H. 2011. The Arabidopsis Multistress Regulator TSPO Is a Heme Binding Membrane Protein and a Potential Scavenger of Porphyrins via an Autophagy-Dependent Degradation Mechanism. Plant Cell. 23(2):785–805. doi:10.1105/tpc.110.081570.
  • Thirumalaikumar VP, Gorka M, Schulz K, Masclaux-Daubresse C, Sampathkumar A, Skirycz A, Vierstra RD, Balazadeh S. 2020. Selective autophagy regulates heat stress memory in Arabidopsis by NBR1-mediated targeting of HSP90 and ROF1. Autophagy. 1–16. doi:10.1080/15548627.2020.1820778..
  • Zeng Y, Li B, Ji C, Feng L, Niu F, Deng C, Chen S, Lin Y, Cheung KCP, Shen J, et al. 2021. A unique AtSar1D-AtRabD2a nexus modulates autophagosome biogenesis in Arabidopsis thaliana. P Natl Acad Sci. 118(17):e2021293118. doi:10.1073/pnas.2021293118..
  • Droese S, Bindseil KU, Bowman EJ, Siebers A, Zeeck A, Altendorf K. 1993. Inhibitory effect of modified bafilomycins and concanamycins on P-and V-type adenosinetriphosphatases. Biochemistry. 32(15):3902–3906. doi:10.1021/bi00066a008.
  • Huss M, Ingenhorst G, König S, Gaßel M, Dröse S, Zeeck A, Altendorf K, Wieczorek H. 2002. Concanamycin A, the specific inhibitor of V-ATPases, binds to the Vo subunit c. J Biol Chem. 277(43):40544–40548. doi:10.1074/jbc.M207345200.
  • Yoshimoto K, Hanaoka H, Sato S, Kato T, Tabata S, Noda T, Ohsumi Y. 2004. Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell. 16(11):2967–2983. doi:10.1105/tpc.104.025395.
  • Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, Ohsumi Y, Shirasu K. 2009. Autophagy negatively regulates cell death by controlling NPR1-Dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell. 21(9):2914–2927. doi:10.1105/tpc.109.068635.
  • Xu SC, LoRicco JG, Bishop AC, James NA, Huynh WH, McCallum SA, Roan NR, Makhatadze GI. 2020. Sequence-independent recognition of the amyloid structural motif by GFP protein family. P Natl Acad Sci. 117(36):22122–22127. doi:10.1073/pnas.2001457117.
  • Chanoca A, Kovinich N, Burkel B, Stecha S, Bohorquez-Restrepo A, Ueda T, Eliceiri KW, Grotewold E, Otegui MS. 2015. Anthocyanin vacuolar inclusions form by a microautophagy mechanism. Plant Cell. 27(9):2545–2559. doi:10.1105/tpc.15.00589.
  • Nakamura S, Hidema J, Sakamoto W, Ishida H, Izumi M. 2018. Selective elimination of membrane-damaged chloroplasts via microautophagy. Plant Physiol. 177(3):1007–1026. doi:10.1104/pp.18.00444.
  • Sieńko K, Poormassalehgoo A, Yamada K, Goto-Yamada S. 2020. Microautophagy in plants: consideration of its molecular mechanism. Cells. 9(4):887. doi:10.3390/cells9040887.
  • Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, Abeliovich H, Abildgaard MH, Abudu YP, Acevedo-Arozena A, et al. 2021. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy. 17(1):1–382. doi: 10.1080/15548627.2020.1797280
  • Branon TC, Bosch JA, Sanchez D, Udeshi ND, Svinkina T, Carr SA, Feldman JL, Perrimon N, Ting AY. 2018. Efficient proximity labeling in living cells and organisms with TurboID. Nat Biotech. 36(9):880–887. doi:10.1038/nbt.4201.
  • Ma J, Liang Z, Zhao J, Wang P, Ma W, Mai KK, Fernandez Andrade JA, Zeng Y, Grujic N, Jiang L, et al. 2021. Friendly mediates membrane depolarization-induced mitophagy in Arabidopsis. Curr Biol. 31(9):1931–1944.e4. doi:10.1016/j.cub.2021.02.034..
  • Marshall RS, Hua Z, Mali S, McLoughlin F, Vierstra RD. 2019. ATG8-binding UIM proteins define a new class of autophagy adaptors and receptors. Cell. 177(3):766–781. doi:10.1016/j.cell.2019.02.009.
  • Pohl C, Dikic I. 2019. Cellular quality control by the ubiquitin-proteasome system and autophagy. Science. 366(6467):818–822. doi:10.1126/science.aax3769.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.