2,104
Views
6
CrossRef citations to date
0
Altmetric
Research Paper

Identification of differentially expressed miRNAs and their target genes in response to brassinolide treatment on flowering of tree peony (Paeonia ostii)

, , , , &
Article: 2056364 | Received 20 Feb 2022, Accepted 16 Mar 2022, Published online: 27 Mar 2022

References

  • Liu J, Zhao D, Zhao J. Study of the cutting mechanism of oil tree peony stem. Forests. 2020;11(7):760. doi:10.3390/f11070760.
  • Wang S, Xue J, Ahmadi N, Holloway P, Zhu F, Ren X, Zhang X. Molecular characterization and expression patterns of PsSVP genes reveal distinct roles in flower bud abortion and flowering in tree peony (Paeonia suffruticosa). Canadian Journal of Plant Science. 2014;94:1181–14. doi:10.1139/CJPS2013-360.
  • Zhao D, Zhang X, Fang Z, Wu Y, Tao J. Physiological and transcriptomic analysis of tree peony (Paeonia section Moutan DC.) in response to drought stress. Forests. 2019;10(2):135. doi:10.3390/f10020135.
  • Guo X, Cheng F, Zhong Y. Genetic diversity of Paeonia rockii (flare tree peony) germplasm accessions revealed by phenotypic traits, EST-SSR markers and chloroplast DNA sequences. Forests. 2020;11(6):672. doi:10.3390/f11060672.
  • Wang S, Gao J, Xue J, Xue Y, Li D, Guan Y, Zhang X. De novo sequencing of tree peony (Paeonia suffruticosa) transcriptome to identify critical genes involved in flowering and floral organ development. BMC Genomics. 2019;20:572. doi:10.1186/s12864-019-5857-0.
  • Zou L, Pan C, Wang M, Cui L, Han B. Progress on the mechanism of hormones regulating plant flower formation. Hereditas (Beijing). 2020;42(8):739–751. doi:10.16288/j.yczz.20-014.
  • Xue J, Li T, Wang S, Xue Y, Hu F, Zhang X. Elucidation of the mechanism of reflowering in tree peony (Paeonia suffruticosa) ‘Zi Luo Lan’ by defoliation and gibberellic acid application. Plant Physiology and Biochemistry. 2018;132:571–578. doi:10.1016/j.plaphy.2018.10.004.
  • Oklestkova J, Rárová L, Kvasnica M, Strnad M. Brassinosteroids: synthesis and biological activities. Phytochemistry Reviews. 2015;14:1053–1072. doi:10.1007/s11101-015-9446-9.
  • Yuan X, Zhang L, Huang L, Yang H, Zhong Y, Ning N, Wen Y, Dong S, Song X, Wang H. Spraying brassinolide improves sigma broad tolerance in foxtail millet (Setaria italica L.) through modulation of antioxidant activity and photosynthetic capacity. Scientific Reports. 2017;7:11232. doi:10.1038/s41598-017-11867-w.
  • Li Z, Yang O, Zhang Z, Li J, He Y. Brassinosteroid signaling recruits histone 3 lysine-27 demethylation activity to FLOWERING LOCUS C chromatin to inhibit the floral transition in Arabidopsis. Molecular Plant. 2018;11:1135–1146. doi:10.1016/j.molp.2018.06.007.
  • Liu H, Wang M, Wen Z, Cui C, Deng J, Wang J. Effects of brassinosteroid sprayed in different stages on the florescence and ornamental quality of chrysanthemum. Hubei Agricultural Sciences. 2014;53:97–99. http://en.cnki.com.cn/Article_en/CJFDTotal-HBNY201401030.htm.
  • Wan X, Ye Y, Mei L, Xing Y. Effect of GA3 and BR on the florescence and chlorogenic acid of honeysuckle. Southwest China Journal of Agricultural Sciences. 2009;22:156–158. http://en.cnki.com.cn/Article_en/CJFDTOTAL-XNYX200901040.htm.
  • Xiao R, Zhang L, Jia C, Wang X, Zhang L, Guo L, Xue X, Hou X. Effect of exogenous brassinosteroid on physiological characteristics of Paeonia ostii ‘Fengdan’. Plant Physiology Journal. 2018;54:49–57. doi:10.13592/j.cnki.ppj.2018.0300.
  • Ren Z, Chen F, Shu C, Li X, Liu K, Ji X. Effects of exogenous 2,4-epibrassinolide on heat resistance of peony. Journal of Jianghan University (Natural Science Edition). 2018;46:446–453. http://en.cnki.com.cn/Article_en/CJFDTOTAL-WHZG201805009.htm.
  • Lv S, Cheng S, Wang Z, Li S, Jin X, Lan L, Yang B, Yu K, Ni X, Li N, et al. Draft genome of the famous ornamental plant Paeonia suffruticosa. Ecology and Evolution. 2019;10(11):4518–4530. doi:10.1002/ece3.5965.
  • Gai S, Zhang Y, Mu P, Liu C, Liu S, Dong L, Zheng G. Transcriptome analysis of tree peony during chilling requirement fulfillment: assembling, annotation and markers discovering. Gene. 2012;497:256–262. doi:10.1016/j.gene.2011.12.013.
  • Hou X, Guo Q, Wei W, Guo L, Guo D, Zhang L. Screening of genes related to early and late flowering in tree peony based on bulked segregant RNA sequencing and verification by quantitative real-time PCR. Molecules. 2018;23:689. doi:10.3390/molecules23030689.
  • Zhang L, Guo D, Guo L, Guo Q, Wang H, Hou X. Construction of a high-density genetic map and QTLs mapping with GBS from the interspecific F1 population of P. ostii ‘Fengdan Bai’ andP. suffruticosa ‘Xin Riyuejin’. Scientia Horticulturae. 2019;246:190–200. doi:10.1016/j.scienta.2018.10.039.
  • Guan Y, Xue J, Xue Y, Yang R, Wang S, Zhang X. Effect of exogenous GA3 on flowering quality, endogenous hormones, and hormone - and flowering-associated gene expression in forcing-cultured tree peony (Paeonia suffruticosa). Journal of Integrative Agriculture. 2021;18:1295. doi:10.1016/S2095-3119(18)62131-8.
  • Wang S, Ren X, Xue J, Xue Y, Cheng X, Hou X, Zhang X. Molecular characterization and expression analysis of the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE gene family in Paeonia suffruticosa. Plant Cell Reports. 2020;39(11):1425–1441. doi:10.1007/s00299-020-02573-5.
  • Liu S, Ni Y, He Q, Wang J, Chen Y, Lu C. Genome-wide identification of microRNAs that respond to drought stress in seedlings of tertiary relict Ammopiptanthus mongolicus. Horticultural Plant Journal. 2017;3(5):209–218. doi:10.1016/j.hpj.2017.10.003.
  • Wang K, Su X, Cui X, Du Y, Zhang S, Gao J. Identification and characterization of microRNA during Bemisia tabaci infestations in Solanum lycopersicum and Solanum habrochaites. Horticultural Plant Journal. 2018;4:62–72. doi:10.1016/j.hpj.2018.03.002.
  • Zhao D, Xia X, Wei M, Sun J. Overexpression of herbaceous peony miR156e-3p improves anthocyanin accumulation in transgenic Arabidopsis thaliana lateral branches. 3 Biotech. 2017;7:379. doi:10.1007/s13205-017-1011-3.
  • Jung J, Seo YH, Seo PJ, Reyes JL, Yun J, Chua NH, Park CM. The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell. 2007;19:2736–2748. doi:10.1105/tpc.107.054528.
  • Luo Y, Guo Z, Li L. Evolutionary conservation of microRNA regulatory programs in plant flower development. Developmental Biology. 2013;380:133–144. doi:10.1016/j.ydbio.2013.05.009.
  • Aukerman MJ, Sakai H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like Target genes. Plant Cell. 2003;15:2730–2741. doi:10.1105/tpc.016238.
  • Chen X. A microRNA as a translational repressor of APETA-LA2 in Arabidopsis flower development. Science. 2004;303:2022–2025. doi:10.1126/science.1088060.
  • Zhao L, Kim Y, Dinh T, Chen X. miR172 regulates stem cell fate and defines the inner boundary of APETALA3 and PISTILLATA expression domain in Arabidopsis floral meristems. Plant Journal. 2010;51:840–849. doi:10.1111/j.1365-313x.2007.03181.x.
  • Gandikota M, Birkenbihl RP, Höhmann SH, Cardon GH, Saedler H. The miR156/157 recognition element in the 3’ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant Journal. 2007;49:683–693. doi:10.1111/j.1365-313x.2006.02983.x.
  • Jin Q, Xue Z, Dong C, Wang Y, Chu L. Identification and characterization of microRNAs from tree peony (Paeonia ostii) and their response to copper stress. PLoS One. 2015;10:0117584. doi:10.1371/journal.pone.0117584.
  • Zhang Y, Wang Y, Gao X, Liu C, Gai S. Identification and characterization of microRNAs in tree peony during chilling induced dormancy release by high-throughput sequencing. Scientific Reports. 2018;8:4537. doi:10.1038/s41598-018-22415-5.
  • Yin D, Li S, Shu Q, Gu Z, Wu Q, Feng C, Xu W, Wang L. Identification of microRNAs and long non-coding RNAs involved in fatty acid biosynthesis in tree peony seeds. Gene. 2018;666:72–82. doi:10.1016/j.gene.2018.05.011.
  • Han J, Zhang T, Li J, Hu Y. Identification of miRNA responsive to early flowering in tree peony (Paeonia ostii) by high-throughput sequencing. Journal of Horticultural Science and Biotechnology. 2020;96:1–14. doi:10.1080/14620316.2020.1846466.
  • Samad AFA, Muhammad S, Nazaruddin N, Fauzi IA, Murad A, Zainal Z, Ismail I. MicroRNA and transcription factor: key players in plant regulatory network. Frontiers in Plant Science. 2017;8:565. doi:10.3389/fpls.2017.00565.
  • Hsieh LC, Lin S, Shih ACC, Chen J, Lin W, Tseng C, Li W, Chiou TJ. Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiology. 2009;151:2120–2132. doi:10.1104/pp.109.147280.
  • Zhu Q, Spriggs A, Matthew L, Fan L, Kennedy G, Gubler F, Helliwell C. A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Research. 2008;18:1456–1465. doi:10.1101/gr.075572.107.
  • Zhang C, Wang Y, Fu J, Dong L, Gao S, Du D. Transcriptomic analysis of cut tree peony with glucose supply using the RNA-Seq technique. Plant Cell Reports. 2014;33:111–129. doi:10.1007/s00299-013-1516-0.
  • Yan L, Lu J, Chang Y, Tang W, Yang Q. Comparative analysis of tree peony petal development by transcriptome sequencing. Acta Physiologiae Plantarum. 2017;39:216. doi:10.1007/s11738-017-2520-8.
  • Wang J, Czech B, Weigel D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell. 2009;138:738–749. doi:10.1016/j.cell.2009.06.014.
  • Bastow R, Mylne JS, Lister C, Lippman Z, Martienssen RA, Dean C. Vernalization requires epigenetic silencing of FLC by histone methylation. Nature. 2004;427(6970):164–167. doi:10.1038/nature02269.
  • Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu J. Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biology. 2008;8(1):25. doi:10.1186/1471-2229-8-25.
  • Xin M, Wang Y, Yao Y, Xie C, Peng H, Ni Z, Sun Q. Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biology. 2010;10: 123-123. doi:10.1186/1471-2229-10-123.
  • Lee J, Noh EK, Choi HS, Shin SC, Park H, Lee H. Transcriptome sequencing of the Antarctic vascular plant Deschampsia Antarctica Desv. under abiotic stress. Planta. 2013;237:823–836. doi:10.1007/s00425-012-1797-5.
  • Arshad M, Feyissa BA, Amyot L, Aung B, Hannoufa A. MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13. Plant Science. 2017;258:122–136. doi:10.1016/j.plantsci.2017.01.018.
  • Shikata M, Koyama T, Mitsuda N, Ohme-Takagi M. Arabidopsis SBP-Box Genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase. Plant and Cell Physiology. 2009;50:2133–2145. doi:10.1093/pcp/pcp148.
  • Anderson PTA. Identification of 188 conserved maize microRNAs and their targets. Febs Letters. 2006;580:3753–3762. doi:10.1016/j.febslet.2006.05.063.
  • Levy YY, Mesnage S, Mylne JS, Gendall AR, Dean C. Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science. 2002;297:243–246. doi:10.1126/science.1072147.
  • Nakamichi N, Kita M, Niinuma K, Ito S, Yamashino T, Mizoguchi T, Mizuno T. Arabidopsis clock-associated pseudo-response regulators PRR9, PRR7 and PRR5 coordinately and positively regulate flowering time through the canonical CONSTANS-dependent photoperiodic pathway. Plant and Cell Physiology. 2007;48:822–832. doi:10.1093/pcp/pcm056.
  • Gendall AR, Levy YY, Wilson A. The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell. 2011;107:525–535. doi:10.1016/S0092-8674(01)00573-6.
  • Scortecci KC, Michaels SD, Amasino RM. Identification of a MADS-box gene, FLOWERING LOCUS M, that represses flowering. Plant Journal. 2001;26:229–236. doi:10.1046/j.1365-313x.2001.01024.x.
  • Sung S, Amasino RM. Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature. 2004;427:159–164. doi:10.1038/nature02195.
  • Paik I, Chen F, Pham VN, Zhu L, Kin J, Huq E. A phyB-PIF1-SPA1 kinase regulatory complex promotes photomorphogenesis in Arabidopsis. Nature Communications. 2019;10:4216. doi:10.1038/s41467-019-12110-y.
  • Endo M, Mochizuki N, Suzuki T, Nagatani A. CRYPTOCHROME2 in vascular bundles regulates flowering in Arabidopsis. Plant Cell. 2007;19:84–93. doi:10.1105/tpc.106.048157.