1,737
Views
0
CrossRef citations to date
0
Altmetric
Short Communication

Strigol induces germination of the facultative parasitic plant Phtheirospermum japonicum in the absence of nitrate ions

ORCID Icon & ORCID Icon
Article: 2114647 | Received 13 Jul 2022, Accepted 11 Aug 2022, Published online: 22 Aug 2022

References

  • Yoshida S, Cui S, Ichihashi Y, Shirasu K. The haustorium, a specialized invasive organ in parasitic plants. Annu Rev Plant Biol. 2016;67(1):1–6. doi:10.1146/annurev-arplant-043015-111702.
  • Parker C. Parasitic weeds: a world challenge. Weed Science. 2012;60(2):269–276. doi:10.1614/WS-D-11-00068.1.
  • Mutuku JM, Cui S, Yoshida S, Shirasu K. Orobanchaceae parasite-host interactions. New Phytol. 2021;230(1):46–59. doi:10.1111/nph.17083.
  • Scholes JD, Press MC. Striga infestation of cereal crops – an unsolved problem in resource limited agriculture. Curr Opin Plant Biol. 2008;11(2):180–186. doi:10.1016/j.pbi.2008.02.004.
  • Yoshida S, Shirasu K. Multiple layers of incompatibility to the parasitic witchweed, Striga hermonthica. New Phytol. 2009;183(1):180–189. doi:10.1111/j.1469-8137.2009.02840.x.
  • Spallek T, Mutuku M, Shirasu K. The genus Striga: a witch profile. Mol Plant Pathol. 2013;14(9):861–869. doi:10.1111/mpp.12058.
  • Cook CE, Whichard LP, Turner B, Wall ME, Egley GH. Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science. 1966;154(3753):1189–1190. doi:10.1126/science.154.3753.1189.
  • Matusova R, et al. The strigolactone germination stimulants of the plant-parasitic striga and orobanche spp. are derived from the carotenoid pathway. Plant Physiol. 2005;139(2):920–934. doi:10.1104/pp.105.061382.
  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka, J, Yamaguchi, S . Inhibition of shoot branching by new terpenoid plant hormones. Nature. 2008;455(7210):195–200. doi:10.1038/nature07272.
  • Ito S, et al. Canonical strigolactones are not the tillering-inhibitory hormone but rhizospheric signals in rice. bioRxiv. 2022. doi:10.1101/2022.04.05.487102.
  • Conn CE, Bythell-Douglas R, Neumann D, Yoshida S, Whittington B, Westwood JH, Shirasu K, Bond CS, Dyer KA, Nelson DC . Convergent evolution of strigolactone perception enabled host detection in parasitic plants. Science. 2015;349(6247):540–543. doi:10.1126/science.aab1140.
  • Nelson DC. The mechanism of host-induced germination in root parasitic plants. Plant Physiol. 2021;185(4):1353–1373. doi:10.1093/plphys/kiab043.
  • Waters MT, Scaffidi A, Flematti G, Smith SM. Substrate-induced degradation of the α/β-Fold hydrolase KARRIKIN INSENSITIVE2 requires a functional catalytic triad but is independent of MAX2. Mol Plant. 2015;8(5):814–817. doi:10.1016/j.molp.2014.12.020.
  • Conn CE, Nelson DC. Evidence that KARRIKIN-INSENSITIVE2 (KAI2) receptors may perceive an unknown signal that is not karrikin or strigolactone. Front Plant Sci. 2016;6:1219. doi:10.3389/fpls.2015.01219.
  • Yoshida S, Kim S, Wafula EK, Tanskanen J, Kim Y-M, Honaas L, Yang Z, Spallek T, Conn CE, Ichihashi Y, et al. Genome sequence of Striga asiatica provides insight into the evolution of plant parasitism. Curr Biol. 2019;29(18):3041–3052. doi:10.1016/j.cub.2019.07.086.
  • Xu Y, Miyakawa T, Nosaki S, Nakamura A, Lyu Y, Nakamura H, Ohto U, Ishida H, Shimizu T, Asami T, et al. Structural analysis of HTL and D14 proteins reveals the basis for ligand selectivity in Striga. Nat Commun. 2018;9(1):3947. doi:10.1038/s41467-018-06452-2.
  • Ogawa S, Cui, S, White, ARF, Nelson, DC, Yoshida, S, Shirasu, K . Strigolactones are chemoattractants for host tropism in Orobanchaceae parasitic plants. Nat Commun. 2022;13(1):4653. doi:10.1038/s41467-022-32314-z
  • Cui S, Kubota T, Nishiyama T, Ishida JK, Shigenobu S, Shibata TF, Toyoda A, Hasebe M, Shirasu K, Yoshida S . Ethylene signaling mediates host invasion by parasitic plants. Sci Adv. 2020;6(44):abc2385. doi:10.1126/sciadv.abc2385.
  • Ishida JK, et al. Local auxin biosynthesis mediated by a yucca flavin monooxygenase regulates haustorium development in the parasitic plant phtheirospermum japonicum. Plant Cell. 2016;28(8):1795–1814. doi:10.1105/tpc.16.00310.
  • Spallek T, Melnyk CW, Wakatake T, Zhang J, Sakamoto Y, Kiba T, Yoshida S, Matsunaga S, Sakakibara H, Shirasu K . Interspecies hormonal control of host root morphology by parasitic plants. Proc Natl Acad Sci U S A. 2017;114(20):5283–5288. doi:10.1073/pnas.1619078114.
  • Wakatake T, Ogawa S, Yoshida S, Shirasu K. An auxin transport network underlies xylem bridge formation between the hemi-parasitic plant Phtheirospermum japonicum and host Arabidopsis. Development. 2020;147:dev187781. doi:10.1242/dev.187781.
  • Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15(3):473–497. doi:10.1111/j.1399-3054.1962.tb08052.x.
  • Ogawa S, Wakatake T, Spallek T, Ishida JK, Sano R, Kurata T, Demura T, Yoshida S, Ichihashi Y, Schaller A, Shirasu, K . Subtilase activity in intrusive cells mediates haustorium maturation in parasitic plants. Plant Physiol. 2021;185(4):1381–1394. doi:10.1093/plphys/kiaa001.
  • Derkx MPM, Karssen CM. ffects of light and temperature on seed dormancy and gibberellin-stimulated germination in Arabidopsis thaliana: studies with gibberellin-deficient and -insensitive mutants. Physiol Plant. 1993;89(2):360–368. doi:10.1111/j.1399-3054.1993.tb00167.x.
  • Wang M, et al. Effects of dormancy-breaking chemicals on ABA levels in barley grain embryos. Seed Sci Res. 1998;8(2):129–137. doi:10.1017/S0960258500004025.
  • Alboresi A, et al. Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant Cell Environ. 2005;28(4):500–512. doi:10.1111/j.1365-3040.2005.01292.x.
  • Kodama K, Rich MK, Yoda A, Shimazaki S, Xie X, Akiyama K, Mizuno Y, Komatsu A, Luo Y, Suzuki H, et al. An ancestral function of strigolactones as symbiotic rhizosphere signals. Nat Commun. 2022;13(1):3974. doi:10.1038/s41467-022-31708-3.
  • Irving LJ, et al. Host nutrient supply affects the interaction between the hemiparasite Phtheirospermum japonicum and its host Medicago sativa. Environ Exp Bot. 2019;162:125–132. doi:10.1016/j.envexpbot.2019.02.014.
  • Kokla A, et al. Nitrogen represses haustoria formation through abscisic acid in the parasitic plant Phtheirospermum japonicum. Nat Commun. 2022;13(1):2976. doi:10.1038/s41467-022-30550-x.
  • Ishida JK, Yoshida S, Ito M, Namba S, Shirasu K. Agrobacterium rhizogenes-mediated transformation of the parasitic plant Phtheirospermum japonicum. PLoS One. 2011;6(10):e25802. doi:10.1371/journal.pone.0025802.
  • Cui S, et al. Haustorial hairs are specialized root hairs that support parasitism in the facultative parasitic plant Phtheirospermum japonicum. Plant Physiol. 2016;170(3):1492–1503. doi:10.1104/pp.15.01786.