1,319
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Mechanism of calcium signal response to cadmium stress in duckweed

, , , , , , , , , ORCID Icon & show all
Article: 2119340 | Received 29 Jul 2022, Accepted 26 Aug 2022, Published online: 14 Sep 2022

References

  • Holubek R, Deckert J, Zinicovscaia I, Yushin N, Vergel K, Frontasyeva M, Sirotkin AV, Bajia DS, Chmielowska-Bąk J. The recovery of soybean plants after short-term cadmium stress. Plants. 2020;9(6):782. doi:10.3390/plants9060782.
  • Raza A, Habib M, Kakavand SN, Zahid Z, Zahra N, Sharif R, Hasanuzzaman M. Phytoremediation of cadmium: physiological, biochemical, and molecular mechanisms. Biology. 2020;9(7):177. doi:10.3390/biology9070177.
  • Naciri R, Lahrir M, Benadis C, Chtouki M, Oukarroum A. Interactive effect of potassium and cadmium on growth, root morphology and chlorophyll a fluorescence in tomato plant. Sci Rep. 2021;11(1):5384. doi:10.1038/s41598-021-84990-4.
  • Pegler JL, Oultram JMJ, Nguyen DQ, Grof CPL, Eamens AL. MicroRNA-mediated responses to cadmium stress in Arabidopsis thaliana. Plants. 2021;10(1):130. doi:10.3390/plants10010130.
  • Yang L, Wei Y, Li N, Zeng J, Han Y, Zuo Z, Wang S, Zhu Y, Zhang Y, Sun J, et al. Declined cadmium accumulation in Na+/H+ antiporter (NHX1) transgenic duckweed under cadmium stress. Ecotoxicol Environ Saf. 2019;182:109397. doi:10.1016/j.ecoenv.2019.109397.
  • Yang L, Han Y, Wu D, Yong W, Liu M, Wang S, Liu W, Lu M, Wei Y, Sun J. Salt and cadmium stress tolerance caused by overexpression of the Glycine Max Na+/H+ Antiporter (GmNHX1) gene in duckweed (Lemna turionifera 5511). Aquat Toxicol. 2017;192:127–11. doi:10.1016/j.aquatox.2017.08.010.
  • Ismael MA, Elyamine AM, Moussa MG, Cai M, Zhao X, Hu C. Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers. Metallomics. 2019;11(2):255–277. doi:10.1039/C8MT00247A.
  • Allen GJ, Schroeder JI . Combining genetics and cell biology to crack the code of plant cell calcium signaling. Sci STKE. 2001;(102):re13 . doi:10.1126/stke.2001.102.re13.
  • Kudla J, Batistič O, Hashimoto K. Calcium signals: the lead currency of plant information processing. Plant Cell. 2010;22(3):541–563. doi:10.1105/tpc.109.072686.
  • Seifikalhor M, Aliniaeifard S, Shomali A, Azad N, Hassani B, Lastochkina O, Li T. Calcium signaling and salt tolerance are diversely entwined in plants. Plant Signal Behav. 2019;14(11):1665455. doi:10.1080/15592324.2019.1665455.
  • Zhang L, Du L, Poovaiah BW. Calcium signaling and biotic defense responses in plants. Plant Signal Behav. 2014;9(11):e973818. doi:10.4161/15592324.2014.973818.
  • Zeng L, Zhu T, Gao Y, Wang Y, Ning C, Björn LO, Chen D, Li S. Effects of Ca addition on the uptake, translocation, and distribution of Cd in Arabidopsis thaliana. Ecotoxicol Environ Saf. 2017;139:228–237. doi:10.1016/j.ecoenv.2017.01.023.
  • Wan G, Najeeb U, Jilani G, Naeem MS, Zhou W. Calcium invigorates the cadmium-stressed Brassica napus L. plants by strengthening their photosynthetic system. Environ Sci Pollut Res. 2011;18(9):1478–1486. doi:10.1007/s11356-011-0509-1.
  • Singh SK, Chang I-F. Pharmacological studies with specific agonist and antagonist of animal iGluR on root growth in Arabidopsis thaliana. GABA Glutamate. 2018. doi:10.5772/intechopen.72121.
  • Cook NP, Archer CM, Fawver JN, Schall HE, Rodriguez-Rivera J, Dineley KT, Martı́ AA, Murray IVJ. Ruthenium red colorimetric and birefringent staining of amyloid-β aggregates in vitro and in Tg2576 mice. ACS Chem Neurosci. 2013;4(3):379–384. doi:10.1021/cn300219n.
  • Pottosin II, Dobrovinskaya OR, Muñiz J. Cooperative block of the plant endomembrane ion channel by ruthenium red. Biophys J. 1999;77(4):1973–1979. doi:10.1016/S0006-3495(99)77038-4.
  • Chen D, Zhang H, Wang Q, Shao M, Li X, Chen D, Zeng R, Song Y. Intraspecific variations in cadmium tolerance and phytoaccumulation in giant duckweed (Spirodela polyrhiza). J Hazard Mater. 2020;395:122672. doi:10.1016/j.jhazmat.2020.122672.
  • Wang X, Zhang B, Wu D, Hu L, Huang T, Gao G, Huang S, Wu S. Chemical forms governing Cd tolerance and detoxification in duckweed (Landoltia punctata). Ecotoxicol Environ Saf. 2021;207:111553. doi:10.1016/j.ecoenv.2020.111553.
  • Chen Q, Jin Y, Zhang G, Fang Y, Xiao Y, Zhao H. Improving production of bioethanol from duckweed (Landoltia punctata) by pectinase pretreatment. Energies. 2012;5(8):3019–3032. doi:10.3390/en5083019.
  • Miretzky P, Saralegui A, Cirelli AF. Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere. 2004;57(8):997–1005. doi:10.1016/j.chemosphere.2004.07.024.
  • Yang L, Ren Q, Ma X, Wang M, Sun J, Wang S, Wu X, Chen X, Wang C, Li Q, et al. New insight into the effect of riluzole on cadmium tolerance and accumulation in duckweed (Lemna turionifera). Ecotoxicol Environ Saf. 2022;241:113783. doi:10.1016/j.ecoenv.2022.113783.
  • Morizane C, Adachi K, Furutani I, Fujita Y, Akaike A, Kashii S, Honda Y. N v-Nitro-L-arginine methyl ester protects retinal neurons against N-methyl-D-aspartate-induced neurotoxicity in vivo 5. Eur J Pharmacol. 1997;328(1):45–49. doi:10.1016/s0014-2999(97)83026-9.
  • Qiu X-M, Sun -Y-Y, Ye X-Y, Li Z-G. Signaling role of glutamate in plants. Front Plant Sci. 2020;10:1743. doi:10.3389/fpls.2019.01743.
  • Kong D, Ju C, Parihar A, Kim S, Cho D, Kwak JM. Arabidopsis glutamate receptor homolog3.5 modulates cytosolic Ca2+ level to counteract effect of abscisic acid in seed germination. Plant Physiol. 2015;167(4):1630–1642. doi:10.1104/pp.114.251298.
  • Goto Y, Maki N, Ichihashi Y, Kitazawa D, Igarashi D, Kadota Y, Shirasu K. Exogenous treatment with glutamate induces immune responses in Arabidopsis. MPMI. 2020;33(3):474–487. doi:10.1094/MPMI-09-19-0262-R.
  • Bak LK, Schousboe A, Waagepetersen HS. The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem. 2006;98(3):641–653. doi:10.1111/j.1471-4159.2006.03913.x.
  • Yang L, Han H, Liu M, Zuo Z, Zhou K, Lü J, Zhu Y, Bai Y, Wang Y. Overexpression of the Arabidopsis photorespiratory pathway gene, serine: glyoxylate aminotransferase (AtAGT1), leads to salt stress tolerance in transgenic duckweed (Lemna minor). Plant Cell Tiss Organ Cult. 2013;113(3):407–416. doi:10.1007/s11240-012-0280-0.
  • Virdi AS, Singh S, Singh P, Bones AM. Abiotic stress responses in plants: roles of calmodulin-regulated proteins. Front Plant Sci. 2015;6:6. doi:10.3389/fpls.2015.00809.
  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–652. doi:10.1038/nbt.1883.
  • Ahmadi M, Pashangzadeh S, Moraghebi M, Sabetian S, Shekari M, Eini F, Salehi E, Mousavi P. Construction of circRNA‐miRNA‐mRNA network in the pathogenesis of recurrent implantation failure using integrated bioinformatics study. J Cellular Molecular Medi. 2022;26(6):1853–1864. doi:10.1111/jcmm.16586.
  • Schumaker KS, Sze H. Calcium transport into the vacuole of oat roots. Characterization of H+/Ca2+ exchange activity. J Biol Chem. 1986;261(26):12172–12178. doi:10.1016/S0021-9258(18)67219-9.
  • Friedman H, Meir S, Rosenberger I, Halevy AH, Kaufman PB, Philosoph-Hadas S. Inhibition of the gravitropic response of snapdragon spikes by the calcium-channel blocker lanthanum chloride. Plant Physiol. 1998;118(2):483–492. doi:10.1104/pp.118.2.483.
  • Feng T, He X, Zhuo R, Qiao G, Han X, Qiu W, Chi L, Zhang D, Liu M. Identification and functional characterization of ABCC transporters for Cd tolerance and accumulation in Sedum alfredii Hance. Sci Rep. 2020;10(1):20928. doi:10.1038/s41598-020-78018-6.
  • Ma M-T, Zhang J, Farooqui AA, Chen P, Ong W-Y. Effects of cholesterol oxidation products on exocytosis. Neurosci Lett. 2010;476(1):36–41. doi:10.1016/j.neulet.2010.03.078.
  • Yao J, Sun J, Chen Y, Shi L, Yang L, Wang Y. The molecular mechanism underlying cadmium resistance in NHX1 transgenic Lemna turonifera was studied by comparative transcriptome analysis. Plant Cell Tiss Organ Cult. 2020;143(1):189–200. doi:10.1007/s11240-020-01909-z.
  • Hijaz F, Killiny N. The use of deuterium-labeled gamma-aminobutyric (D6-GABA) to study uptake, translocation, and metabolism of exogenous GABA in plants. Plant Methods. 2020;16(1):24. doi:10.1186/s13007-020-00574-9.
  • Peñalosa JM, Carpena RO, Vázquez S, Agha R, Granado A, Sarro MJ, Esteban E. Chelate-assisted phytoextraction of heavy metals in a soil contaminated with a pyritic sludge. Science Total Environ. 2007;378(1–2):199–204. doi:10.1016/j.scitotenv.2007.01.047.
  • Xu Q, Wang C, Li S, Li B, Li Q, Chen G, Chen W, Wang F. Cadmium adsorption, chelation and compartmentalization limit root-to-shoot translocation of cadmium in rice (Oryza sativa L.). Environ Sci Pollut Res. 2017;24(12):11319–11330. doi:10.1007/s11356-017-8775-1.
  • Loscos J, Naya L, Ramos J, Clemente MR, Matamoros MA, Becana M. A reassessment of substrate specificity and activation of phytochelatin synthases from model plants by physiologically relevant metals. Plant Physiol. 2006;140(4):1213–1221. doi:10.1104/pp.105.073635.
  • Cailliatte R, Schikora A, Briat J-F, Mari S, Curie C. High-affinity manganese uptake by the metal transporter NRAMP1 is essential for arabidopsis growth in low manganese conditions. Plant Cell. 2010;22(3):904–917. doi:10.1105/tpc.109.073023.
  • Yue X, Song J, Fang B, Wang L, Zou J, Su N, Cui J. BcNRAMP1 promotes the absorption of cadmium and manganese in Arabidopsis. Chemosphere. 2021;283:131113. doi:10.1016/j.chemosphere.2021.131113.
  • Shigaki T, Sreevidya C, Hirschi KD . Analysis of the Ca2+ domain in the Arabidopsis H+/Ca2+ antiporters CAX1 and CAX3. Plant Mol Biol. 2002;50(3):475–83 . doi:10.1023/A:1019880006606.
  • Ajeesh Krishna TP, Maharajan T, Victor Roch G, Ignacimuthu S, Antony Ceasar S. Structure, function, regulation and phylogenetic relationship of ZIP family transporters of plants. Front Plant Sci. 2020;11:662. doi:10.3389/fpls.2020.00662.
  • Kim D-Y, Bovet L, Maeshima M, Martinoia E, Lee Y. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance: role of AtPDR8 in cadmium resistance. Plant J. 2007;50(2):207–218. doi:10.1111/j.1365-313X.2007.03044.x.
  • Kinnersley AM, Lin F. Receptor modifiers indicate that 4-aminobutyric acid (GABA) is a potential modulator of ion transport in plants. 2000;32(1): 65-76. doi:10.1023/A:1006305120202.
  • Toyota M, Spencer D, Sawai-Toyota S, Jiaqi W, Zhang T, Koo AJ, Howe GA, Gilroy S. Glutamate triggers long-distance, calcium-based plant defense signaling. Science. 2018;361(6407):1112–1115. doi:10.1126/science.aat7744.
  • Vergun O, Reynolds IJ. Fluctuations in mitochondrial membrane potential in single isolated brain mitochondria: modulation by adenine nucleotides and Ca2+. Biophys J. 2004;87(5):3585–3593. doi:10.1529/biophysj.104.042671.
  • Sagi M, Davydov O, Orazova S, Yesbergenova Z, Ophir R, Stratmann JW, Fluhr R. Plant respiratory burst oxidase homologs impinge on wound responsiveness and development in Lycopersicon esculentum [W]. Plant Cell. 2004;16(3):616–628. doi:10.1105/tpc.019398. W.
  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu W-L, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature. 2002;415(6875):977–983. doi:10.1038/415977a.
  • Deng J, Yang X, Sun W, Miao Y, He L, Zhang X. The calcium sensor CBL2 and its interacting kinase CIPK6 are involved in plant sugar homeostasis via interacting with tonoplast sugar transporter TST2. Plant Physiol. 2020;183(1):236–249. doi:10.1104/pp.19.01368.
  • Haruta M, Monshausen G, Gilroy S, Sussman MR. A cytoplasmic Ca 2+ functional assay for identifying and purifying endogenous cell signaling peptides in Arabidopsis seedlings: identification of AtRALF1 peptide. Biochemistry. 2008;47(24):6311–6321. doi:10.1021/bi8001488.
  • Suda H . Calcium dynamics during trap closure visualized in transgenic Venus flytrap. Nature Plants. 2020;6(10):1219–1224:. doi:10.1038/s41477-020-00773-1.
  • Yang L, Yao J, Sun J, Shi L, Chen Y, Sun J. The Ca2+ signaling, Glu, and GABA responds to Cd stress in duckweed. Aquat Toxicol. 2020;218:105352. doi:10.1016/j.aquatox.2019.105352.
  • Forde BG. Glutamate signaling in roots. J Exp Bot. 2014;65(3):779–787. doi:10.1093/jxb/ert335.
  • Li Z-G, Ye X-Y, Qiu X-M. Glutamate signaling enhances the heat tolerance of maize seedlings by plant glutamate receptor-like channels-mediated calcium signaling. Protoplasma. 2019;256(4):1165–1169. doi:10.1007/s00709-019-01351-9.
  • Tabassum S, Ahmad S, Madiha S, Shahzad S, Batool Z, Sadir S, Haider S. Free l-glutamate-induced modulation in oxidative and neurochemical profile contributes to enhancement in locomotor and memory performance in male rats. Sci Rep. 2020;10(1):11206. doi:10.1038/s41598-020-68041-y.
  • Rodriguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gomez M, Del Rio LA, Sandalio LM. Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ. 2006;29(8):1532–1544. doi:10.1111/j.1365-3040.2006.01531.x.
  • Zhao J, Shigaki T, Mei H, Guo Y, Cheng N-H, Hirschi KD. Interaction between Arabidopsis Ca2+/H+ exchangers CAX1 and CAX3. J Biol Chem. 2009;284:4605–4615. doi:10.1074/jbc.M804462200.
  • Shigaki T, Hirschi K. Characterization of CAX-like genes in plants: implications for functional diversity. Gene. 2000;257(2):291–298. doi:10.1016/S0378-1119(00)00390-5.
  • Bozzi AT, Gaudet R. Molecular mechanism of nramp-family transition metal transport. J Mol Biol. 2021;433(16):166991. doi:10.1016/j.jmb.2021.166991.
  • Kathawala RJ, Wang Y-J, Shukla S, Zhang Y-K, Alqahtani S, Kaddoumi A, Ambudkar SV, Ashby CR, Chen Z-S. ATP-binding cassette subfamily B member 1 (ABCB1) and subfamily C member 10 (ABCC10) are not primary resistance factors for cabazitaxel. Chin J Cancer. 2015;34(3):5. doi:10.1186/s40880-015-0003-0.