539
Views
0
CrossRef citations to date
0
Altmetric
Short Communication

Cesium could be used as a proxy for potassium in mycorrhizal Medicago truncatula

ORCID Icon & ORCID Icon
Article: 2134676 | Received 19 Sep 2022, Accepted 06 Oct 2022, Published online: 19 Oct 2022

References

  • Leigh RA, Wyn Jones RG. A hypothesis relating critical potassium concentration for growth to the distribution and functions of this ion in the plant cell. New Phytol. 1984;97(1):1–4. doi:10.1111/j.1469-8137.1984.tb04103.x.
  • Adams E, Shin R. Transport, signaling, and homeostasis of potassium and sodium in plants. J Integr Plant Biol. 2014;56(3):231–249. doi:10.1111/jipb.12159.
  • Benito B, Haro R, Amtmann A, Cuin TA, Dreyer I. The twins K+ and Na+ in plants. J Plant Physiol. 2014;171(9):723–731. doi:10.1016/j.jplph.2013.10.014.
  • Anschütz U, Becker D, Shabala S. Going beyond nutrition: regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. J Plant Physiol. 2014;171(9):670–687. doi:10.1016/j.jplph.2014.01.009.
  • Zörb C, Senbayram M, Peiter E. Potassium in agriculture–status and perspectives. J Plant Physiol. 2014;171(9):656–669. doi:10.1016/j.jplph.2013.08.008.
  • Asher C, Ozanne P. Growth and potassium content of plants in solution cultures maintained at constant potassium concentrations. Soil Sci. 1967;103(3):155–161. doi:10.1097/00010694-196703000-00002.
  • Drew MC, Nye PH. The supply of nutrient ions by diffusion to plant roots in soil. Plant Soil. 1969;31(3):407–424. doi:10.1007/BF01373813.
  • Garcia K, Zimmermann SD. The role of mycorrhizal associations in plant potassium nutrition. Front Plant Sci. 2014;5:1–9. http://www.frontiersin.org/Plant_Traffic_and_Transport/10.3389/fpls.2014.00337/abstract.
  • Pallon J, Wallander H, Hammer E, Arteaga Marrero N, Auzelyte V, Elfman M, Kristiansson P, Nilsson C, Olsson PA, Wegdén M. Symbiotic fungi that are essential for plant nutrient uptake investigated with NMP. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms. 2007;260(1):149–152. doi:10.1016/j.nimb.2007.02.018.
  • Scheloske S, Maetz M, Schneider T, Hildebrandt U, Bothe H, Povh B. Element distribution in mycorrhizal and nonmycorrhizal roots of the halophyte Aster tripolium determined by proton induced X-ray emission. Protoplasma. 2004;223(2–4):183–189. doi:10.1007/s00709-003-0027-1.
  • Estrada B, Aroca R, Maathuis FJM, Barea JM, Ruiz-Lozano JM. Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell Environ. 2013;36(10):1771–1782. doi:10.1111/pce.12082.
  • Liu J, Liu J, Liu J, Cui M, Huang Y, Tian Y, Chen A, Xu G. The potassium transporter SlHAK10 is involved in mycorrhizal potassium uptake. Plant Physiol. 2019;180(1):465–479. doi:10.1104/pp.18.01533.
  • Ye Z, Zeng J, Li X, Zeng F, Zhang G. Physiological characterizations of three barley genotypes in response to low potassium stress. Acta Physiol Plant. 2017;39(10):232. doi:10.1007/s11738-017-2516-4.
  • Garcia K, Chasman D, Roy S, Ane J-M. Physiological responses and gene co-expression network of mycorrhizal roots under K + deprivation. Plant Physiol. 2017;173(3):1811–1823. doi:10.1104/pp.16.01959.
  • Frank HER, Garcia K. Benefits provided by four ectomycorrhizal fungi to Pinus taeda under different external potassium availabilities. Mycorrhiza. 2021;31(6):755–766. doi:10.1007/s00572-021-01048-z.
  • Kafle A, Cooney DR, Shah G, Garcia K. Mycorrhiza-mediated potassium transport in Medicago truncatula can be evaluated by using rubidium as a proxy. Plant Sci. 2022;322:111364. doi:10.1016/j.plantsci.2022.111364.
  • Burger A, Lichtscheidl I. Stable and radioactive cesium: a review about distribution in the environment, uptake and translocation in plants, plant reactions and plants’ potential for bioremediation. Sci Total Environ. 2018;618:1459–1485. doi:10.1016/j.scitotenv.2017.09.298.
  • Meding SM, Zasoski RJ. Hyphal-mediated transfer of nitrate, arsenic, cesium, rubidium, and strontium between arbuscular mycorrhizal forbs and grasses from a California oak woodland. Soil Biol Biochem. 2008;40(1):126–134. doi:10.1016/j.soilbio.2007.07.019.
  • Gyuricza V, Thiry Y, Wannijn J, Declerck S, Dupré de Boulois H. Radiocesium transfer between Medicago truncatula plants via a common mycorrhizal network. Environ Microbiol. 2010;12(8):2180–2189. doi:10.1111/j.1462-2920.2009.02118.x.
  • Gyuricza V, Dupré de Boulois H, Declerck S. Effect of potassium and phosphorus on the transport of radiocesium by arbuscular mycorrhizal fungi. J Environ Radioact. 2010;101(6):482–487. doi:10.1016/j.jenvrad.2008.04.002.
  • Joner EJ, Roos P, Jansa J, Frossard E, Leyval C, Jakobsen I. No significant contribution of arbuscular mycorrhizal fungi to transfer of radiocesium from soil to plants. Appl Environ Microbiol. 2004;70(11):6512–6517. doi:10.1128/AEM.70.11.6512-6517.2004.
  • Wiesel L, Dubchak S, Turnau K, Broadley MR, White PJ. Caesium inhibits the colonization of Medicago truncatula by arbuscular mycorrhizal fungi. J Environ Radioact. 2015;141:57–61. doi:10.1016/j.jenvrad.2014.12.001.
  • Clay JR, Shlesinger MF. Analysis of the effects of cesium ions on potassium channel currents in biological membranes. J Theor Biol. 1984;107(2):189–201. doi:10.1016/S0022-5193(84)80021-1.
  • Cecchi X, Wolff D, Alvarez O, Latorre R. Mechanisms of Cs+ blockade in a Ca2+-activated K+ channel from smooth muscle. Biophys J. 1987;52(5):707–716. doi:10.1016/S0006-3495(87)83265-4.
  • Adams E, Miyazaki T, Saito S, Uozumi N, Shin R. Cesium inhibits plant growth primarily through reduction of potassium influx and accumulation in Arabidopsis. Plant Cell Physiol. 2019;60:63–76.