1,055
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Comparison analysis of metabolite profiling in seeds and bark of Ulmus parvifolia, a Chinese medicine species

, , , , &
Article: 2138041 | Received 03 Aug 2022, Accepted 11 Oct 2022, Published online: 01 Nov 2022

References

  • Thakur R, Karnosky D. Micropropagation and germplasm conservation of central park splendor Chinese elm (Ulmus parvifolia Jacq. ‘A/Ross Central Park’) trees. Plant Cell Rep. 2007;26(8):1171–10. doi:10.1007/s00299-007-0334-7.
  • Li JX, Zhou FQ, Zhang ZR. Medica flora of Shandong. Xi’an: Xi’an Jiaotong University Press; 2013.
  • Fujian Academy of Traditional Chinese Medicine. Records of Fujian medicines. Vol. 2. Fuzhou (Fujian): Fujian Science and Technology Press; 1994.
  • Duke JA, Ayensu ES. Medicinal plants of China. Vol. 2, Algonac (Michigan): Reference Publications; 1985.
  • Mina SA, Melek FR, Adeeb RM, Hagag EG. LC/ESI-MS/MS profiling of Ulmus parvifolia extracts and evaluation of its anti-inflammatory, cytotoxic, and antioxidant activities. Zeitschrift Für Naturforschung C. 2016;71(11–12):415–421. doi:10.1515/znc-2016-0057.
  • Lee YY, Kim M, Irfan M, Yuk HJ, Kim DS, Lee SE, Kim SH, Kim S, Kim SD, Rhee MH. Ulmus parvifolia Jacq. exhibits antiobesity properties and potentially induces browning of white adipose tissue. J Evidence-Based Complementary Altern Med. 2020;2020:9358563.
  • Irfan M, Kwon H-W, Lee D-H, Shin J-H, Yuk HJ, Kim D-S, Hong S-B, Kim S-D, Rhee MH. Ulmus parvifolia modulates platelet functions and inhibits thrombus formation by regulating integrin αIIbβ3 and cAMP signaling. Front pharmacol. 2020;11:698. doi:10.3389/fphar.2020.00698.
  • M MH, El-Amin S, Refahy LA, Soliman E-SA, Mansour WA, Taleb HMA, Morsi E. Anticancer and antiviral estimation of three Ulmus pravifolia extracts and their chemical constituents. Orient J Chem. 2015;31(3):1621–1634. doi:10.13005/ojc/310341.
  • Kang MC, Yumnam S, Park WS, So HM, Kim KH, Shin MC, Ahn M-J, Kim SY. Ulmus parvifolia accelerates skin wound healing by regulating the expression of MMPs and TGF-β. J Clin Med. 2019;9(1):59. doi:10.3390/jcm9010059.
  • Kim SP, Lee SJ, Nam SH, Friedmana M. Elm tree (Ulmus parvifolia) bark bioprocessed with mycelia of shiitake (Lentinus edodes) mushrooms in liquid culture: composition and mechanism of protection against allergic asthma in mice. J Agric Food Chem. 2016;64(4):773–784. doi:10.1021/acs.jafc.5b04972.
  • Chen FC, Lin YM, Chen AH. Sesquiterpenes from the heartwood of Chinese elm. Phytochemistry. 1972;11(3):1190–1191. doi:10.1016/S0031-9422(00)88495-2.
  • Moon RH, Rim GR. Studies on the constituents of Ulmus parvifolia. Korean J Pharmacogn. 1995;26:1–7.
  • Ogura T, Bamba T, Fukusaki E. Development of a practical metabolite identification technique for non-targeted metabolomics. J Chromatogr A. 2013;1301:73–79. doi:10.1016/j.chroma.2013.05.054.
  • Wei R, Li G, Seymour AB. High-throughput and multiplexed LC/MS/MRM method for targeted metabolomics. Analytical Chemistry. 2010;82(13):5527–5533. doi:10.1021/ac100331b.
  • Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean JA. Untargeted metabolomics strategies-challenges and emerging directions. J Am Soc Mass Spectrom. 2016;27(12):1897–1905. doi:10.1007/s13361-016-1469-y.
  • Zhou JN, Hou DH, Zou WQ, Wang JH, Luo R, Wang M, Yu H. Comparison of widely targeted metabolomics and untargeted metabolomics of wild Ophiocordyceps sinensis. Molecules. 2022;27(11):3645. doi:10.3390/molecules27113645.
  • Arapitsas P, Ugliano M, Marangon M, Piombino P, Rolle L, Gerbi V, Versari A, Mattivi F. Use of untargeted liquid chromatography-mass spectrometry metabolome to discriminate Italian monovarietal red wines, produced in their different terroirs. J Agric Food Chem. 2020;68(47):13353–13366. doi:10.1021/acs.jafc.0c00879.
  • Theodoridis GA, Gika HG, Want EJ, Wilson ID. Liquid chromatography-mass spectrometry based global metabolite profiling: a review. Anal Chim Acta. 2012;711:7–16. doi:10.1016/j.aca.2011.09.042.
  • Wu C, Wang HJ, Liu ZY, Xu B, Li ZJ, Song PP, Chao ZM. Untargeted metabolomics coupled with chemometrics for leaves and stem barks of dioecious Morus alba L. Metabolites 2022; 12.
  • Xie CL, Yan SW, Zhang ZM, Gong WB, Zhu ZH, Zhou YJ, Yan L, Hu Z, Ai L, Peng Y, et al. Mapping the metabolic signatures of fermentation broth, mycelium, fruiting body and spores powder from Ganoderma lucidum by untargeted metabolomics. LWT-Food Sci Technol. 2020;129:109494. doi:10.1016/j.lwt.2020.109494.
  • Wu Y, Yang H, Yang H, Zhang C, Lyu L, Li W, Wu W. A physiological and metabolomic analysis reveals the effect of shading intensity on blueberry fruit quality. Food Chemistry: X. 2022;15:100367. doi:10.1016/j.fochx.2022.100367.
  • Wu QK, Zhao X, Chen C, Zhang ZH, Yu FY. Metabolite profiling and classification of developing Styrax tonkinensis kernels. Metabolites. 2020;10(1):21. doi:10.3390/metabo10010021.
  • Schoenbachler JL, Hughey JJ. pmparser and PMDB: resources for large-scale, open studies of the biomedical literature. PeerJ. 2021;9:e11071. doi:10.7717/peerj.11071.
  • Sun C, Tang T, Tang W, Sup L, Zhang H, Xia Z, Zhao HY, Han YX, Lin LB. Plant genomic imprinting and its effect on seed development. Agric Sci Technol. 2017;18:984–1032.
  • Y W, Yb S, Fh S. Research progress on transcription factors regulating plant seed development. Biotechnol Bull. 2019;35:150–159.
  • Ferreyra MLF, Rius SP, Casati P. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci. 2012;3:222. doi:10.3389/fpls.2012.00222.
  • Guo J, Wu Y, Jiang M, Wu C, Wang G. An LC–MS-based metabolomic approach provides insights into the metabolite profiles of Ginkgo biloba L. at different developmental stages and in various organs. Int Food Res J. 2022;159:111644. doi:10.1016/j.foodres.2022.111644.
  • Ross JA, Kasum CM. DIETARY F LAVONOIDS: bioavailability, metabolic effects, and safety. Annu Rev Nutr. 2002;22(1):19–34. doi:10.1146/annurev.nutr.22.111401.144957.
  • Faggio C, Sureda A, Morabito S, Sanches-Silva A, Mocan A, Nabavi SF, Nabavi SM. Flavonoids and platelet aggregation: a brief review. Eur J Pharmacol. 2017;807:91–101. doi:10.1016/j.ejphar.2017.04.009.
  • Chua LS. A review on plant-based rutin extraction methods and its pharmacological activities. J Ethnopharmacol. 2013;150(3):805–817. doi:10.1016/j.jep.2013.10.036.
  • Musial C, Kuban-Jankowska A, Gorska-Ponikowska M. Beneficial properties of green tea catechins. Int J Mol Sci. 2020;21(5):1744. doi:10.3390/ijms21051744.
  • Cherian S, Augusti KT. Antidiabetic effects of a glycoside of leucopelargonidin isolated from Ficus bengalensis Linn. Indian J Exp Biol. 1993;31:26–29.
  • Gonzalez-Abuin N, Pinent M, Casanova-Marti A, Arola L, Blay M, Ardevol A. Procyanidins and their healthy protective effects against type 2 diabetes. Curr Med Chem. 2015;22(1):39–50. doi:10.2174/0929867321666140916115519.
  • Lee YS, Kim JK, Bae YS, Won MH, Kang IJ, Lim SS. Inhibitory effect of glucodistylin from the bark of Quercus acutissima on human recombinant aldose reductase and sorbitol accumulation. Arch Pharmacal Res. 2011;34(2):211–215. doi:10.1007/s12272-011-0205-1.
  • Yin SW, Zhang XX, Lai FY, Liang TZ, Wen JY, Lin WY, Qiu J, Liu S, Li L. Trilobatin as an HIV-1 entry inhibitor targeting the HIV-1 Gp41 envelope. FEBS Lett. 2018;592(13):2361–2377. doi:10.1002/1873-3468.13113.
  • Pfander P, Stoll H. Terpenoid glycosides. Nat Prod Rep. 1991;8(1):69–95. doi:10.1039/np9910800069.
  • Schwab W, Fischer T, Wust M. Terpene glucoside production: improved biocatalytic processes using glycosyltransferases. Eng Life Sci. 2015;15(4):376–386. doi:10.1002/elsc.201400156.
  • Guo R, Liu Y, Pan J, Guan W, Yang B-Y, Kuang H-X. A new sesquiterpenoid with cytotoxic and anti-inflammatory activity from the leaves of Datura metel L. Nat Prod Res. 2021;35(4):607–613. doi:10.1080/14786419.2019.1590715.
  • Wang C, Mao C, Lou Y, Xu J, Wang Q, Zhang Z, Tang Q, Zhang X, Xu H, Feng Y, et al. Monotropein promotes angiogenesis and inhibits oxidative stress-induced autophagy in endothelial progenitor cells to accelerate wound healing. J Cell Mol Med. 2018;22(3):1583–1600. doi:10.1111/jcmm.13434.
  • Zhang Y, Chen Y, Li B, Ding P, Jin D, Hou S, Cai X, Sheng X. The effect of monotropein on alleviating cisplatin-induced acute kidney injury by inhibiting oxidative damage, inflammation and apoptosis. Biomed Pharmacother. 2020;129:110408. doi:10.1016/j.biopha.2020.110408.
  • Liu YK, Jian YQ, Cao MR, Wang B, Qiu YX, Yuan HW, Zhou X, Li B, Sheng W, Peng C, et al. Seco-tetracyclic and seco-pentacyclic triterpenoids from nature: phytochemistry, biological activity: a review. Mini Rev Org Chem. 2022;19(2):188–230. doi:10.2174/1570193X18666210311164309.
  • Pollier J, Goossens A. Oleanolic acid. Phytochemistry. 2012;77:10–15. doi:10.1016/j.phytochem.2011.12.022.
  • Ghosh J, Sil PC. Arjunolic acid: a new multifunctional therapeutic promise of alternative medicine. Biochimie. 2013;95(6):1098–1109. doi:10.1016/j.biochi.2013.01.016.
  • Parvizpour S, Masoudi-Sobhanzadeh Y, Pourseif MM, Barzegari A, Razmara J, Omidi Y. Pharmacoinformatics-based phytochemical screening for anticancer impacts of yellow sweet clover, Melilotus officinalis (Linn.) Pall. Comput Biol Med. 2021;138:104921. doi:10.1016/j.compbiomed.2021.104921.
  • Son J, Lee SY. Ursonic acid exerts inhibitory effects on matrix metalloproteinases via ERK signaling pathway. Chem-Biol Interact. 2020;315: 108910.
  • Wu Y-L, Han F, Luan -S-S, Ai R, Zhang P, Li H, Chen L-X. Triterpenoids from Ganoderma lucidum and their potential anti-inflammatory effects. J Agric Food Chem. 2019;67(18):5147–5158. doi:10.1021/acs.jafc.9b01195.
  • Alqahtani AS, Hidayathulla S, Rehman MT, ElGamal AA, Al-Massarani S, Razmovski-Naumovski V, Alqahtani MS, El Dib RA, AlAjmi MF. Alpha-amylase and alpha-glucosidase enzyme inhibition and antioxidant potential of 3-Oxolupenal and katononic acid isolated from Nuxia oppositifolia. Biomolecules. 2020;10:1–19.
  • Macalalad MAB, Gonzales AA. In-silico screening and identification of phytochemicals from Centella asiatica as potential inhibitors of sodium-glucose co-transporter 2 for treating diabetes. J Biomol Struct Dyn. 2021;1–18. doi:10.1080/07391102.2021.1969282.
  • Chen Q-F, Liu Z-P, Wang F-P. Natural sesquiterpenoids as cytotoxic anticancer agents. Mini Rev Med Chem. 2011;11(13):1153–1164. doi:10.2174/138955711797655399.
  • Sut S, Maggi F, Nicoletti M, Baldan V, Dall`Acqua S. New drugs from old natural compounds: scarcely investigated sesquiterpenes as new possible therapeutic agents. Curr Med Chem. 2018;25(10):1241–1258. doi:10.2174/0929867324666170404150351.
  • Sarkar C, Quispe C, Jamaddar S, Hossain R, Ray P, Mondal M, Abdulwanis Mohamed Z, Sani Jaafaru M, Salehi B, Islam MT, et al. Therapeutic promises of ginkgolide A: a literature-based review. Biomed Pharmacother. 2020;132:110908. doi:10.1016/j.biopha.2020.110908.
  • Wei C, Li D, Liu Y, Wang W, Qiu T. Curdione induces antiproliferation effect on human uterine leiomyosarcoma via targeting IDO1. Front Oncol. 2021;11:637024. doi:10.3389/fonc.2021.637024.
  • Liu P, Miao K, Zhang L, Mou Y, Xu Y, Xiong W, Yu J, Wang Y. Curdione ameliorates bleomycin-induced pulmonary fibrosis by repressing TGF-β-induced fibroblast to myofibroblast differentiation. Respiratory Research. 2020;21(1):58. doi:10.1186/s12931-020-1300-y.
  • Zhou L, Zheng G, Li H, Gao B, Guoruoluo Y, Tang W, Yao G, Zhang Y. Highly oxygenated isoryanodane diterpenoids from the leaves of Cinnamomum cassia and their immunomodulatory activities. Phytochemistry. 2022;196:113077. doi:10.1016/j.phytochem.2021.113077.
  • Ma J, Shojaie A, Michailidis G. A comparative study of topology-based pathway enrichment analysis methods. BMC Bioinformatics. 2019;20(1):546. doi:10.1186/s12859-019-3146-1.
  • Teng H, Fang T, Lin QY, Song HB, Liu B, Chen L. Red raspberry and its anthocyanins: bioactivity beyond antioxidant capacity. Trends Food Sci Technol. 2017;66:153–165. doi:10.1016/j.tifs.2017.05.015.
  • Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B. Plant flavonoids: classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022;383:132531. doi:10.1016/j.foodchem.2022.132531.