486
Views
0
CrossRef citations to date
0
Altmetric
Short communications

The AGL6–ELF3–FT circuit controls flowering time in Arabidopsis

, & ORCID Icon
Article: 2358684 | Received 22 Feb 2024, Accepted 13 May 2024, Published online: 28 May 2024

References

  • Gonzalez-Suarez P, Walker CH, Bennett T. FLOWERING LOCUS T mediates photo-thermal timing of inflorescence meristem arrest in Arabidopsis thaliana. Plant Physiol. 2023;192(3):2276–5. doi:10.1093/plphys/kiad163.
  • Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C. et al. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science. 2007;316(5827):1030–1033. doi:10.1126/science.1141752.
  • Jaeger KE, Wigge PA. FT protein acts as a long-range signal in Arabidopsis. Curr Biol. 2007;17(12):1050–1054. doi:10.1016/j.cub.2007.05.008.
  • Mathieu J, Warthmann N, Kuttner F, Schmid M. Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr Biol. 2007;17(12):1055–1060. doi:10.1016/j.cub.2007.05.009.
  • Giakountis A, Coupland G. Phloem transport of flowering signals. Curr Opin Plant Biol. 2008;11(6):687–694. doi:10.1016/j.pbi.2008.10.003.
  • Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D. Integration of spatial and temporal information during floral induction in Arabidopsis. Science. 2005;309(5737):1056–1059. doi:10.1126/science.1114358.
  • Andres F, Romera-Branchat M, Martínez-Gallegos R, Patel V, Schneeberger K, Jang S, Altmüller J, Nürnberg P, Coupland G. Floral induction in Arabidopsis by FLOWERING LOCUS T requires direct repression of BLADE-ON-PETIOLE genes by the homeodomain protein PENNYWISE. Plant Physiol. 2015;169:2187–2199. doi:10.1104/pp.15.00960.
  • Takagi H, Hempton AK, Imaizumi T. Photoperiodic flowering in Arabidopsis: multilayered regulatory mechanisms of CONSTANS and the florigen FLOWERING LOCUS T. Plant Commun. 2023;4(3):100552. doi:10.1016/j.xplc.2023.100552.
  • Lee J, Lee I. Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot. 2010;61(9):2247–2254. doi:10.1093/jxb/erq098.
  • Yoo SK, Chung KS, Kim J, Lee JH, Hong SM, Yoo SJ, Yoo SY, Lee JS, Ahn JH. Constans activates suppressor of overexpression of constans 1 through Flowering Locus T to promote flowering in Arabidopsis. Plant Physiol. 2005;139(2):770–778. doi:10.1104/pp.105.066928.
  • Jang S, Marchal V, Panigrahi KCS, Wenkel S, Soppe W, Deng X-W, Valverde F, Coupland G. Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. Embo J. 2008;27(8):1277–1288. doi:10.1038/emboj.2008.68.
  • Sawa M, Kay SA, Imaizumi T. Photoperiodic flowering occurs under internal and external coincidence. Plant Signal Behav. 2008;3(4):269–271. doi:10.4161/psb.3.4.5219.
  • Song YH, Estrada DA, Johnson RS, Kim SK, Lee SY, MacCoss MJ, Imaizumi T. Distinct roles of FKF1, Gigantea, and Zeitlupe proteins in the regulation of Constans stability in Arabidopsis photoperiodic flowering. Proc Natl Acad Sci USA. 2014;111(49):17672–17677. doi:10.1073/pnas.1415375111.
  • Searle I, He Y, Turck F, Vincent C, Fornara F, Kröber S, Amasino RA, Coupland G. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev. 2006;20(7):898–912. doi:10.1101/gad.373506.
  • Wu Z, Fang X, Zhu D, Dean C. Autonomous pathway: FLOWERING LOCUS C repression through an antisense-mediated chromatin-silencing mechanism. Plant Physiol. 2020;182(1):27–37. doi:10.1104/pp.19.01009.
  • Ratcliffe OJ, Nadzan GC, Reuber TL, Riechmann JL. Regulation of flowering in Arabidopsis by an FLC homologue. Plant Physiol. 2001;126(1):122–132. doi:10.1104/pp.126.1.122.
  • Yoo SK, Wu X, Lee JS, Ahn JH. AGAMOUS-LIKE 6 is a floral promoter that negatively regulates the FLC/MAF clade genes and positively regulates FT in Arabidopsis. Plant J. 2011;65(1):62–76. doi:10.1111/j.1365-313X.2010.04402.x.
  • Koo SC, Bracko O, Park MS, Schwab R, Chun HJ, Park KM, Seo JS, Grbic V, Balasubramanian S, Schmid M. et al. Control of lateral organ development and flowering time by the Arabidopsis thaliana MADS-box gene AGAMOUS-LIKE6. Plant Journal. 2010;62(5):807–816. doi:10.1111/j.1365-313X.2010.04192.x.
  • Wang L, Song J, Han X, Yu Y, Wu Q, Qi S, Xu Z. Functional divergence analysis of AGL6 genes in Prunus mume. Plants (Basel). 2022;12(1):158. doi:10.3390/plants12010158.
  • Yu JW, Rubio V, Lee N-Y, Bai S, Lee S-Y, Kim S-S, Liu L, Zhang Y, Irigoyen ML, Sullivan JA. et al. COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability. Mol Cell. 2008;32(5):617–630. doi:10.1016/j.molcel.2008.09.026.
  • Kim WY, Hicks KA, Somers DE. Independent roles for EARLY FLOWERING 3 and ZEITLUPE in the control of circadian timing, hypocotyl length, and flowering time. Plant Physiol. 2005;139(3):1557–1569. doi:10.1104/pp.105.067173.
  • Batista RA, Moreno-Romero J, Qiu Y, van Boven J, Santos-González J, Figueiredo DD, Köhler C. The MADS-box transcription factor PHERES1 controls imprinting in the endosperm by binding to domesticated transposons. Elife. 2019;8. doi:10.7554/eLife.50541.
  • Nusinow DA, Helfer A, Hamilton EE, King JJ, Imaizumi T, Schultz TF, Farré EM, Kay SA. The ELF4–ELF3–LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature. 2011;475(7356):398–402. doi:10.1038/nature10182.
  • Tong M, Lee K, Ezer D, Cortijo S, Jung J, Charoensawan V, Box MS, Jaeger KE, Takahashi N, Mas P. et al. The evening complex establishes repressive chromatin domains via H2A.Z deposition. Plant Physiol. 2020;182(1):612–625. doi:10.1104/pp.19.00881.
  • Jeong YY, Lee HY, Kim SW, Noh YS, Seo PJ. Optimization of protoplast regeneration in the model plant Arabidopsis thaliana. Plant Methods. 2021;17(1):21. doi:10.1186/s13007-021-00720-x.
  • Lee K, Park O-S, Go JY, Yu J, Han JH, Kim J, Bae S, Jung YJ, Seo PJ. Arabidopsis ATXR2 represses de novo shoot organogenesis in the transition from callus to shoot formation. Cell Rep. 2021;37(6):109980. doi:10.1016/j.celrep.2021.109980.