404
Views
0
CrossRef citations to date
0
Altmetric
Short communication

Identification and expression profiling of microRNAs in leaf tissues of Foeniculum vulgare Mill. under salinity stress

, , , & ORCID Icon
Article: 2361174 | Received 13 Apr 2024, Accepted 24 May 2024, Published online: 02 Jun 2024

References

  • Begum Y. Regulatory role of microRNAs (miRNAs) in the recent development of abiotic stress tolerance of plants. Gene. 2022;821:146283. doi:10.1016/j.gene.2022.146283.
  • Arnaud N, Laufs P. Plant miRNA integrated functions in development and reproduction. Front Plant Physiol. 2023;1:1271423. doi:10.3389/fphgy.2023.1271423.
  • Bravo-Vázquez LA, Angulo‑Bejarano PI, Bandyopadhyay A, Sharma A, Paul S. Regulatory roles of noncoding RNAs in callus induction and plant cell dedifferentiation. Plant Cell Rep. 2023;42(4):689–14. doi:10.1007/s00299-023-02992-0.
  • Owusu Adjei M, Zhou X, Mao M, Rafique F, Ma J. MicroRNAs roles in plants secondary metabolism. Plant Signal Behav. 2021;16(7):1915590. doi:10.1080/15592324.2021.1915590.
  • Samynathan R, Venkidasamy B, Shanmugam A, Ramalingam S, Thiruvengadam M. Functional role of microRNA in the regulation of biotic and abiotic stress in agronomic plants. Front Genet. 2023;14:1272446. doi:10.3389/fgene.2023.1272446.
  • Bajczyk M, Jarmolowski A, Jozwiak M, Pacak A, Pietrykowska H, Sierocka I, Swida-Barteczka A, Szewc L, Szweykowska-Kulinska Z. Recent insights into plant miRNA biogenesis: multiple layers of miRNA level regulation. Plants. 2023;12(2):342. doi:10.3390/plants12020342.
  • Zhang L, Xiang Y, Chen S, Shi M, Jiang X, He Z, Gao S. Mechanisms of microRNA biogenesis and stability control in plants. Front Plant Sci. 2022;13:844149. doi:10.3389/fpls.2022.844149.
  • Yu D, Wan Y, Ito H, Ma X, Xie T, Wang T, Shao C, Meng Y. PmiRDiscVali: An integrated pipeline for plant microRNA discovery and validation. BMC Genomics. 2019;20(1):133. doi:10.1186/s12864-019-5478-7.
  • Hajieghrari B, Farrokhi N. Investigation on the conserved microRNA genes in higher plants. Plant Mol Biol Report. 2021;39(1):10–23. doi:10.1007/s11105-020-01228-9.
  • Ayachit G, Shaikh I, Pandya H, Das J. Salient features, data and algorithms for microRNA screening from plants: a review on the gains and pitfalls of machine learning techniques. Curr Bioinform. 2020;15(10):1091–1103. doi:10.2174/1574893615999200601121756.
  • Zhao Y, Kuang Z, Wang Y, Li L, Yang X. MicroRNA annotation in plants: current status and challenges. Brief Bioinform. 2021;22(5):bbab075. doi:10.1093/bib/bbab075.
  • Jadid N, Widodo AF, Ermavitalini D, Sa’adah NN, Gunawan S, Nisa C. The medicinal Umbelliferae plant fennel (Foeniculum vulgare Mill.): Cultivation, traditional uses, phytopharmacological properties, and application in animal husbandry. Arabian J Chem. 2023;16(3):104541. doi:10.1016/j.arabjc.2023.104541.
  • Rafieian F, Amani R, Rezaei A, Karaça AC, Jafari SM. Exploring fennel (Foeniculum vulgare): Composition, functional properties, potential health benefits, and safety. Crit Rev Food Sci Nutr. 2023;1–18. doi:10.1080/10408398.2023.2176817.
  • Noreen S, Tufail T, Badar Ul Ain H, Awuchi CG. Pharmacological, nutraceutical, functional and therapeutic properties of fennel (Foeniculum vulgare). Int J Food Prop. 2023;26(1):915–927. doi:10.1080/10942912.2023.2192436.
  • Maleš I, Pedisić S, Zorić Z, Elez-Garofulić I, Repajić M, You L, Vladimir-Knežević S, Butorac D, Dragović-Uzelac V. The medicinal and aromatic plants as ingredients in functional beverage production. J Funct Foods. 2022;96:105210. doi:10.1016/j.jff.2022.105210.
  • Beyk-Khormizi A, Hosseini Sarghein S, Sarafraz-Ardakani MR, Moshtaghioun SM, Mousavi-Kouhi SM, Ganjeali A. Ameliorating effect of vermicompost on Foeniculum vulgare under saline condition. J Plant Nutr. 2023;46(8):1601–1615. doi:10.1080/01904167.2022.2092513.
  • Mohammadi M, Pouryousef M, Farhang N. Study on germination and seedling growth of various ecotypes of fennel (Foeniculum vulgare Mill.) under salinity stress. J Appl Res Med Aromat Plants. 2023;34:100481. doi:10.1016/j.jarmap.2023.100481.
  • Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: From microRNA sequences to function. Nucleic Acids Res. 2019;47(D1):D155–D162. doi:10.1093/nar/gky1141.
  • Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31(13):3406–3415. doi:10.1093/nar/gkg595.
  • Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol. 2021;38(7):3022–3027. doi:10.1093/molbev/msab120.
  • Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: A sequence logo generator. Genome Res. 2004;14(6):1188–1190. doi:10.1101/gr.849004.
  • Cholin SS, Poleshi CA, Manikanta DS, Christopher C. Exploring the genomic resources of carrot for cross-genera transferability and phylogenetic assessment among orphan spices and vegetables of Apiaceae family. Hortic Environ Biotechnol. 2019;60(1):81–93. doi:10.1007/s13580-018-0101-4.
  • Youssef D, El-Bakatoushi R, Elframawy A, El-Sadek L, El Badan G. Molecular phylogenetic study of flavonoids in medicinal plants: a case study family Apiaceae. J Plant Res. 2023;136(3):305–322. doi:10.1007/s10265-023-01442-y.
  • Dai X, Zhuang Z, Zhao PX. psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Res. 2018;46(W1):W49–W54. doi:10.1093/nar/gky316.
  • Palumbo F, Vannozzi A, Vitulo N, Lucchin M, Barcaccia G. The leaf transcriptome of fennel (Foeniculum vulgare Mill.) enables characterization of the t-anethole pathway and the discovery of microsatellites and single-nucleotide variants. Sci Rep. 2018;8(1):10459. doi:10.1038/s41598-018-28775-2.
  • Palumbo F, Galla G, Vitulo N, Barcaccia G. First draft genome sequencing of fennel (Foeniculum vulgare Mill.): identification of simple sequence repeats and their application in marker-assisted breeding. Mol Breed. 2018;38(10):122. doi:10.1007/s11032-018-0884-0.
  • Binns D, Dimmer E, Huntley R, Barrell D, O’Donovan C, Apweiler R. QuickGO: A web-based tool for gene ontology searching. Bioinformatics. 2009;25(22):3045–3046. doi:10.1093/bioinformatics/btp536.
  • Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas R, Avila-Campilo I, Creech M, Gross B. et al. Integration of biological networks and gene expression data using Cytoscape. Nat Protoc. 2007;2(10):2366–2382. doi:10.1038/nprot.2007.324.
  • Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35(suppl_2):W182–W185. doi:10.1093/nar/gkm321.
  • Fatima H, Hamdani SDA, Ahmed M, Rajput TA, Gul A, Amir R, Munir F, Malik SZ, Babar MM. Anti-MRSA potential of biogenic silver nanoparticles synthesized from hydroponically grown Foeniculum vulgare. Phytomed Plus. 2023;3(1):100415. doi:10.1016/j.phyplu.2023.100415.
  • Pagano L, Rossi R, Paesano L, Marmiroli N, Marmiroli M. miRNA regulation and stress adaptation in plants. Environ Exp Bot. 2021;184:104369. doi:10.1016/j.envexpbot.2020.104369.
  • Yu T, Xu N, Haque N, Gao C, Huang W, Huang Z. Popular computational tools used for miRNA prediction and their future development prospects. Interdiscip Sci Comput Life Sci. 2020;12(4):395–413. doi:10.1007/s12539-020-00387-3.
  • Raza A, Charagh S, Karikari B, Sharif R, Yadav V, Mubarik MS, Habib M, Zhuang Y, Zhang C, Chen H. et al. miRNAs for crop improvement. Plant Physiol Biochem. 2023;201:107857. doi:10.1016/j.plaphy.2023.107857.
  • Singh A, Gandhi N, Mishra V, Yadav S, Rai V, Sarkar AK. Role of abiotic stress responsive miRNAs in Arabidopsis root development. J Plant Biochem Biotechnol. 2020;29(4):733–742. doi:10.1007/s13562-020-00626-0.
  • Chand Jha U, Nayyar H, Mantri N, Siddique KHM. Non-coding RNAs in legumes: their emerging roles in regulating biotic/abiotic stress responses and plant growth and development. Cells. 2021;10(7):1674. doi:10.3390/cells10071674.
  • Choudhary A, Kumar A, Kaur H, Kaur N. MiRNA: the taskmaster of plant world. Biologia (Bratisl). 2021;76(5):1551–1567. doi:10.1007/s11756-021-00720-1.
  • Chowdhury Paul S, Sharma A, Mehta R, Paul S. In silico characterization of microRNAs and their target transcripts from cranberry (Vaccinium macrocarpon). Cytol Genet. 2020;54(1):82–90. doi:10.3103/S0095452720010120.
  • Paul S, Reyes-Pérez P, Angulo-Bejarano PI, Srivastava A, Ramalingam S, Sharma A. Characterization of microRNAs from neem (Azadirachta indica) and their tissue-specific expression study in leaves and stem. 3 Biotech. 2021;11(6):277. doi:10.1007/s13205-021-02839-z.
  • Baqi A, Samiullah Rehman W, Bibi I, Menaa F, Khan Y, Albalawi DA, Sattar A. Identification and validation of functional miRNAs and their main targets in Sorghum bicolor. Mol Biotechnol. Published online December 28, 2023;1–15. doi:10.1007/s12033-023-00988-5.
  • Khan QH. Identification of Conserved and Novel MicroRNAs with their Targets in Garden Pea (Pisum sativum L.) Leaves by High-Throughput Sequencing. Bioinform Biol Insights. 2023;17. doi:10.1177/11779322231162777.
  • Xing H, Li Y, Ren Y, Zhao Y, Wu X, Li HL. Genome-wide investigation of microRNAs and expression profiles during rhizome development in ginger (Zingiber officinale Roscoe). BMC Genomics. 2022;23(1):49. doi:10.1186/s12864-021-08273-y.
  • Bhavsar M, Mangukia N, Patel S, Rawal R, Mankad A. Unraveling the miRnome of Nicotiana rustica (Aztec tobacco) - A Genomewide computational assessment. Plant Gene. 2022;32:100378. doi:10.1016/j.plgene.2022.100378.
  • Zhang F, Yang J, Zhang N, Wu J, Si H. Roles of microRNAs in abiotic stress response and characteristics regulation of plant. Front Plant Sci. 2022;13:919243. doi:10.3389/fpls.2022.919243.
  • Dong Q, Hu B, Zhang C. microRNAs and their roles in plant development. Front Plant Sci. 2022;13:824240. doi:10.3389/fpls.2022.824240.
  • Thakur S, Vasudev PG. MYB transcription factors and their role in medicinal plants. Mol Biol Rep. 2022;49(11):10995–11008. doi:10.1007/s11033-022-07825-z.
  • Islam W, Tauqeer A, Waheed A, Zeng F. MicroRNA mediated plant responses to nutrient stress. Int J Mol Sci. 2022;23(5):2562. doi:10.3390/ijms23052562.
  • Jodder J. miRNA-mediated regulation of auxin signaling pathway during plant development and stress responses. J Biosci. 2020;45(1):91. doi:10.1007/s12038-020-00062-1.
  • Hernandez Y, Goswami K, Sanan-Mishra N. Stress induced dynamic adjustment of conserved miR164:NAC module. Plant-Environment Interact. 2020;1(2):134–151. doi:10.1002/pei3.10027.
  • Lotfi A, Pervaiz T, Jiu S, Faghihi F, Jahanbakhshian Z, Khorzoghi EG, Fang J, Seyedi SM. Role of microRNAs and their target genes in salinity response in plants. Plant Growth Regul. 2017;82(3):377–390. doi:10.1007/s10725-017-0277-0.
  • Sun G, Stewart CN, Xiao P, Zhang B. MicroRNA expression analysis in the cellulosic biofuel crop switchgrass (Panicum virgatum) under abiotic stress. PLoS One. 2012;7(3):e32017. doi:10.1371/journal.pone.0032017.
  • Kang T, Yu CY, Liu Y, Song WM, Bao Y, Guo XT, Li B, Zhang HX. Subtly manipulated expression of Zmmir156 in tobacco improves drought and salt tolerance without changing the architecture of transgenic plants. Front Plant Sci. 2020;10:1664. doi:10.3389/fpls.2019.01664.
  • Luo H, Zhou Z, Song G, Yao H, Han L. Antioxidant enzyme activity and microRNA are associated with growth of Poa pratensis callus under salt stress. Plant Biotechnol Rep. 2020;14(4):429–438. doi:10.1007/s11816-020-00620-x.
  • Ye Y, Wang J, Wang W, Xu L. ARF family identification in Tamarix chinensis reveals the salt responsive expression of TcARF6 targeted by miR167. PeerJ. 2020;8(3):e8829. doi:10.7717/peerj.8829.
  • Sharma A, Ruiz-Manriquez LM, Serrano-Cano FI, Reyes-Pérez PR, Tovar Alfaro CK, Barrón Andrade YE, Hernández Aros AK, Srivastava A, Paul S. Identification of microRNAs and their expression in leaf tissues of guava (Psidium guajava L.) under salinity stress. Agronomy. 2020;10(12):1920. doi:10.3390/agronomy10121920.
  • Scintu D, Scacchi E, Cazzaniga F, Vinciarelli F, De Vivo M, Shtin M, Svolacchia N, Bertolotti G, Unterholzener SJ, Del Bianco M. et al. microRNA165 and 166 modulate response of the Arabidopsis root apical meristem to salt stress. Commun Biol. 2023;6(1):834. doi:10.1038/s42003-023-05201-6.
  • Li H, Dong Y, Yin H, Wang N, Yang J, Liu X, Wang Y, Wu J, Li X. Characterization of the stress associated microRNAs in Glycine max by deep sequencing. BMC Plant Biol. 2011;11(1):170. doi:10.1186/1471-2229-11-170.
  • Li Y, Wang X, Guo Q, Zhang X, Zhou L, Zhang Y, Zhang C. Conservation and diversity of miR166 family members from highbush blueberry (Vaccinium corymbosum) and their potential functions in abiotic stress. Front Genet. 2022;13:919856. doi:10.3389/fgene.2022.919856.
  • Liu HH, Tian X, Li YJ, Wu CA, Zheng CC. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA. 2008;14(5):836–843. doi:10.1261/rna.895308.
  • Deng P, Wang L, Cui L, Feng K, Liu F, Du X, Tong W, Nie X, Ji W, Weining S. et al. Global identification of microRNAs and their targets in barley under salinity stress. PLoS One. 2015;10(9):e0137990. doi:10.1371/journal.pone.0137990.
  • Ma C, Burd S, Lers A. miR408 is involved in abiotic stress responses in arabidopsis. Plant Journal. 2015;84(1):169–187. doi:10.1111/tpj.12999.
  • Guo X, Niu J, Cao X. Heterologous expression of Salvia miltiorrhiza microRNA408 enhances tolerance to salt stress in Nicotiana benthamiana. Int J Mol Sci. 2018;19(12):3985. doi:10.3390/ijms19123985.
  • Attia H, Alamer K, Algethami B, Zorrig W, Hessini K, Gupta K, Gupta B. Gibberellic acid interacts with salt stress on germination, growth and polyamine gene expression in fennel (Foeniculum vulgare Mill.) seedlings. Physiol Mol Biol Plants. 2022;28(3):607–622. doi:10.1007/s12298-022-01140-4.
  • Gross M, Friedman J, Dudai N, Larkov O, Cohen Y, Bar E, Ravid U, Putievsky E, Lewinsohn E. Biosynthesis of estragole and t-anethole in bitter fennel (Foeniculum vulgare Mill. var. vulgare) chemotypes. Changes in SAM:phenylpropene O-methyltransferase activities during development. Plant Sci. 2002;163(5):1047–1053. doi:10.1016/S0168-9452(02)00279-0.
  • Ghasemian A, Al-Marzoqi AH, Mostafavi SKS, Alghanimi YK, Teimouri M. Chemical composition and antimicrobial and cytotoxic activities of Foeniculum vulgare Mill essential oils. J Gastrointest Cancer. 2020;51(1):260–266. doi:10.1007/s12029-019-00241-w.
  • Qiu J, Li H, Su H, Dong J, Luo M, Wang J, Leng B, Deng Y, Liu J, Deng X. Chemical composition of fennel essential oil and its impact on Staphylococcus aureus exotoxin production. World J Microbiol Biotechnol. 2012;28(4):1399–1405. doi:10.1007/s11274-011-0939-4.
  • Abdollahi MR, Kianersi F, Moosavi SS, Dastan D, Asadi S. Identification and expression analysis of two genes involved in the biosynthesis of t-anethole in fennel (Foeniculum vulgare Mill.) and their up-regulation in leaves in response to methyl jasmonate treatments. J Plant Growth Regul. 2023;42(2):759–770. doi:10.1007/s00344-022-10583-8.
  • Unamba CIN, Nag A, Sharma RK. Next generation sequencing technologies: the doorway to the unexplored genomics of non-model plants. Front Plant Sci. 2015;6:1074. doi:10.3389/fpls.2015.01074.
  • Kern F, Backes C, Hirsch P, Fehlmann T, Hart M, Meese E, Keller A. What’s the target: Understanding two decades of in silico microRNA-target prediction. Brief Bioinform. 2020;21(6):1999–2010. doi:10.1093/bib/bbz111.
  • Giambruno R, Mihailovich M, Bonaldi T. Mass spectrometry-based proteomics to unveil the non-coding RNA world. Front Mol Biosci. 2018;5:90. doi:10.3389/fmolb.2018.00090.