425
Views
0
CrossRef citations to date
0
Altmetric
Research paper

Exploring cotton SFR2’s conundrum in response to cold stress

, , , , & ORCID Icon
Article: 2362518 | Received 02 May 2024, Accepted 28 May 2024, Published online: 05 Jun 2024

References

  • Quesada B, Vautard R, Yiou P. Cold waves still matter: Characteristics and associated climatic signals in Europe. Clim Change. 2023;176(6):70. doi:10.1007/s10584-023-03533-0.
  • Evan K, Steinhaeuser K, Ganguly AR. Persisting cold extremes under 21st-century warming scenarios. Geophys Res Lett. 2011;38(8). doi:10.1029/2011gl047103.
  • Shen Q, Zhang S, Ge C, Liu S, Chen J, Liu R, Ma H, Song M, Pang C. Genome-wide association study identifies ghsal1 affects cold tolerance at the seedling emergence stage in upland cotton (gossypium hirsutum L.). Theor Appl Genet. 2023;136(2):27. doi:10.1007/s00122-023-04317-x.
  • Wang L, Zhao Y, Long X, Feng S, Guan X. A review of molecular regulation studies of low temperature stress in cotton. Crop Design. 2023;2(2):100039. doi:10.1016/j.cropd.2023.100039.
  • Ding Y, Shi Y, Yang S. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytol. 2019;222(4):1690–8. doi:10.1111/nph.15696.
  • Thomashow MF. PLANT COLD ACCLIMATION: Freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Phys. 1999;50(June):571–599. doi:10.1146/annurev.arplant.50.1.571.
  • Barnes AC, Benning C, Roston RL. Chloroplast membrane remodeling during freezing stress is accompanied by cytoplasmic acidification activating SENSITIVE to FREEZING2. Plant Physiol. 2016;171(3):2140–2149. doi:10.1104/pp.16.00286.
  • Cristina B-S, Silvestre S, Haslam RP, Michaelson LV. Lipid remodelling: unravelling the response to cold stress in arabidopsis and its extremophile relative eutrema salsugineum. Plant Sci: Int J Exp Plant Bio. 2017;263(October):194–200. doi:10.1016/j.plantsci.2017.07.017.
  • Uemura M, Joseph RA, Steponkus PL. Cold acclimation of Arabidopsis thaliana (effect on plasma membrane lipid composition and freeze-induced Lesions). Plant Physiol. 1995;109(1):15–30. doi:10.1104/pp.109.1.15.
  • Yu L, Zhou C, Fan J, Shanklin J, Xu C. Mechanisms and functions of membrane lipid remodeling in plants. Plant J: For Cell Mol Bio. 2021;107(1):37–53. doi:10.1111/tpj.15273.
  • McKown R, Kuroki G, Warren G. Cold responses of arabidopsis mutants impaired in freezing tolerance. J Exp Bot. 1996;47(12):1919–1925. doi:10.1093/jxb/47.12.1919.
  • Xin Z, Browse J. Eskimo1 mutants of arabidopsis are constitutively freezing-tolerant. Proc Natl Acad Sci Usa. 1998;95(13):7799–7804. doi:10.1073/pnas.95.13.7799.
  • Kidokoro S, Shinozaki K, Yamaguchi-Shinozaki K. Transcriptional regulatory network of plant cold-stress responses. Trends Plant Sci. 2022;27(9):922–935. doi:10.1016/j.tplants.2022.01.008.
  • Fourrier N, Bédard J, Lopez-Juez E, Barbrook A, Bowyer J, Jarvis P, Warren G, Thorlby G. A Role for SENSITIVE to FREEZING2 in protecting chloroplasts against freeze-induced damage in arabidopsis. Plant J: For Cell Mol Bio. 2008;55(5):734–745. doi:10.1111/j.1365-313X.2008.03549.x.
  • Moellering ER, Muthan B, Benning C. Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane. Science. 2010;330(6001):226–228. doi:10.1126/science.1191803.
  • Roston RL, Wang K, Kuhn LA, Benning C. Structural determinants allowing transferase activity in SENSITIVE to FREEZING 2, classified as a family i glycosyl hydrolase. J Biol Chem. 2014;289(38):26089–26106. doi:10.1074/jbc.M114.576694.
  • Jouhet J. Importance of the hexagonal lipid phase in biological membrane organization. Front Plant Sci. 2013;4(December):494. doi:10.3389/fpls.2013.00494.
  • Barnes AC, Myers JL, Surber SM, Liang Z, Mower JP, Schnable JC, Roston RL, Nakamura Y. Oligogalactolipid production during cold challenge is conserved in early diverging lineages. Journal Of Experimental Botany. 2023 June. 74(17):5405–5417. doi:10.1093/jxb/erad241.
  • Abro AA, Anwar M, Javwad MU, Zhang M, Liu F, Jiménez-Ballesta R, Salama EAA, Ahmed MAA. Morphological and physio-biochemical responses under heat stress in cotton: Overview. Biotechnol Rep. 2023;40(December):e00813. doi:10.1016/j.btre.2023.e00813.
  • Majeed S, Ahmad Rana I, Salman Mubarik M, Muhammad Atif R, Tehseen Azhar M, Chung G, Jia Y, Du X, Hinze L, Azhar MT. Heat stress in cotton: a review on predicted and unpredicted growth-yield anomalies and mitigating breeding strategies. Agronomy. 2021;11(9):1825. doi:10.3390/agronomy11091825.
  • Farooq MA, Shafqat Chattha W, Sohaib Shafique M, Karamat U, Tabusam J, Zulfiqar S, Shakeel A. Transgenerational impact of climatic changes on cotton production. Front Plant Sci. 2023 Mar. 14:987514. doi:10.3389/fpls.2023.987514.
  • Gipson JR, Joham HE. Influence of night temperature on growth and development of cotton (Gossypium Hirsutum L.) IV. Seed Quality1. Agron J. 1969;61(3):365–367. doi:10.2134/agronj1969.00021962006100030008x.
  • Saini DK, Impa SM, McCallister D, Patil GB, Abidi N, Glen Ritchie SYJ, Jagadish KSV, Jagadish KSV. High day and night temperatures impact on cotton yield and quality—current status and future research direction. J Cotton Res. 2023;6(1):16. doi:10.1186/s42397-023-00154-x.
  • Singh B, Norvell E, Wijewardana C, Wallace T, Chastain D, Reddy KR. Assessing morphological characteristics of elite cotton lines from different breeding programmes for low temperature and drought tolerance. J Agron Crop Sci. 2018;204(5):467–476. doi:10.1111/jac.12276.
  • Snider JL, Thangthong N, Pilon C, Virk G, Tishchenko V. OJIP-Fluorescence parameters as rapid indicators of cotton (gossypium hirsutum l.) seedling vigor under contrasting growth temperature regimes. Plant Physiol Biochem: PPB/Soc Fr de Physiol Vegetale. 2018;132(November):249–257. doi:10.1016/j.plaphy.2018.09.015.
  • Virk G, Snider JL, Chee P, Jespersen D, Pilon C, Rains G, Roberts P, Kaur N, Ermanis A, Tishchenko V. Extreme temperatures affect seedling growth and photosynthetic performance of advanced cotton genotypes. Ind Crops Prod. 2021;172(November):114025. doi:10.1016/j.indcrop.2021.114025.
  • Gu L, Hanson PJ, Kaiser DP, Yang B, Nemani R, Pallardy SG, Meyers T, Meyers T. The 2007 Eastern US spring freeze: increased cold damage in a warming world? Bioscience. 2008;58(3):253–262. doi:10.1641/B580311.
  • Kargiotidou A, Deli D, Galanopoulou D, Tsaftaris A, Farmaki T. Low Temperature and light regulate delta 12 fatty acid desaturases (fad2) at a transcriptional level in cotton (Gossypium Hirsutum). J Exp Bot. 2008;59(8):2043–2056. doi:10.1093/jxb/ern065.
  • Christopher G, Donald N, Hashimoto K, Kudla J, Schumacher K, Blatt MR. A ubiquitin-10 promoter-based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies. Plant J: For Cell Mol Bio. 2010;64(2):355–365. doi:10.1111/j.1365-313X.2010.04322.x.
  • Clough SJ, Bent AF. Floral Dip: A simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J: For Cell Mol Bio. 1998;16(6):735–743. doi:10.1046/j.1365-313x.1998.00343.x.
  • Shomo ZD, Mahboub S, Vanviratikul H, McCormick M, Tulyananda T, Roston RL, Warakanont J. All members of the arabidopsis dgat and pdat acyltransferase families operate during high and low Temperatures. Plant Physiol. 2024 Feb. 195(1):685–697. doi:10.1093/plphys/kiae074.
  • Samira M, Zachery DS, Maxwell Regester R, Albusharif M, Rebecca LR. Three methods to extract membrane glycerolipids: comparing sensitivity to lipase degradation and yield. Methods Mol Biol. 2021;2295:15–27.
  • Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37(8):911–917. doi:10.1139/y59-099.
  • Wang Z, Benning C. Arabidopsis thaliana polar glycerolipid Profiling by Thin Layer Chromatography (TLC) Coupled with Gas-Liquid Chromatography (GLC). J Visualized Exp: JoVE. 2011 Mar. (49). doi:10.3791/2518.
  • Warren G, McKown R, Marin AL, Teutonico R. Isolation of mutations affecting the development of freezing tolerance in Arabidopsis thaliana (L.) heynh. Plant Physiol. 1996;111(4):1011–1019. doi:10.1104/pp.111.4.1011.
  • Thorlby G, Fourrier N, Warren G. The SENSITIVE to FREEZING2 gene, required for freezing tolerance in Arabidopsis thaliana, encodes a beta-glucosidase. Plant Cell. 2004;16(8):2192–2203. doi:10.1105/tpc.104.024018.
  • Shimamura C, Ohno R, Nakamura C, Takumi S. Improvement of freezing tolerance in tobacco plants expressing a cold-responsive and chloroplast-targeting protein WCOR15 of wheat. J Plant Physiol. 2006;163(2):213–219. doi:10.1016/j.jplph.2005.06.008.
  • NDong C, Danyluk J, Wilson KE, Pocock T, Huner NPA, Sarhan F. Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins. molecular characterization and Functional Analyses. Plant Physiol. 2002;129(3):1368–1381. doi:10.1104/pp.001925.
  • Li W, Chen Y, Ye M, Lu H, Wang D, Chen Q. Evolutionary history of the c-repeat binding factor/dehydration-responsive element-binding 1 (CBF/DREB1) protein family in 43 plant species and characterization of cbf/dreb1 proteins in solanum tuberosum. BMC Evol Biol. 2020;20(1):142. doi:10.1186/s12862-020-01710-8.
  • Li H, Chen M, Duan L, Zhang T, Cao Y, Zhang Z. Domain swap approach reveals the critical roles of different domains of symrk in root nodule symbiosis in lotus japonicus. Front Plant Sci. 2018;9(June):697. doi:10.3389/fpls.2018.00697.
  • Wulff BB, Thomas CM, Smoker M, Grant M, Jones JD. Domain swapping and gene shuffling identify sequences required for induction of an avr-dependent hypersensitive response by the tomato Cf-4 and Cf-9 proteins. Plant Cell. 2001;13(2):255–272. doi:10.1105/tpc.13.2.255.
  • Wang K, Lynn Hersh H, Benning C. SENSITIVE to FREEZING2 aids in resilience to salt and drought in freezing-sensitive tomato. Plant Physiol. 2016;172(3):1432–1442. doi:10.1104/pp.16.01183.
  • Gasulla F, Vom Dorp K, Dombrink I, Zähringer U, Gisch N, Dörmann P, Bartels D. The Role of lipid metabolism in the acquisition of desiccation tolerance in craterostigma plantagineum: a comparative approach. Plant J: For Cell Mol Bio. 2013;75(5):726–741. doi:10.1111/tpj.12241.
  • National Cotton Council of America. The story of cotton: where cotton grows. n.d [Accessed 2024 Mar 5]. https://www.cotton.org/pubs/cottoncounts/story/where.cfm#:~:text=Cotton%20Cotton%20grows%20in%20warm,are%20Brazil%2C%20Pakistan%20and%20Turkey.