474
Views
0
CrossRef citations to date
0
Altmetric
Review

Lead toxicity in plants: mechanistic insights into toxicity, physiological responses of plants and mitigation strategies

, , , , &
Article: 2365576 | Received 28 Feb 2024, Accepted 04 Jun 2024, Published online: 20 Jun 2024

References

  • Collin S, Baskar A, Geevarghese DM, Ali MNVS, Bahubali P, Choudhary R, Lvov V, Tovar GI, Senatov F, Koppala S, et al. Bioaccumulation of lead (Pb) and its effects in plants: a review. J Hazard Mater Lett [Internet]. 2022;3:100064. doi:10.1016/j.hazl.2022.100064.
  • Balkhair KS, Ashraf MA. Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi J Biol Sci [Internet]. 2016;23(1):S32–21. https://www.sciencedirect.com/science/article/pii/S1319562X15002181.
  • Neeti K, Prakash T. Effects of heavy metal poisoning during pregnancy. Int Res J Environ Sci Int Sci Congress Assoc [Internet]. 2013;2:88–92. www.isca.in.
  • da Costa JP, Avellan A, Mouneyrac C, Duarte A, Rocha-Santos T. Plastic additives and microplastics as emerging contaminants: mechanisms and analytical assessment. TrAC Trend Anal Chem [Internet]. 2023;158:116898. https://www.sciencedirect.com/science/article/pii/S0165993622003818.
  • Arora NK, Chauhan R. Heavy metal toxicity and sustainable interventions for their decontamination. Environ Sustainability [Internet]. 2021;4(1):1–3. doi:10.1007/s42398-021-00164-y.
  • Zhang M, Wu Y, Li Y, Zhou R, Yu H, Zhu X, Quan H, Li Y. Risk assessment for the long-term stability of fly ash-based cementitious material containing arsenic: dynamic and semidynamic leaching. Environ Pollut. 2024;345:123361. doi:10.1016/j.envpol.2024.123361.
  • Saidon NB, Szabó R, Budai P, Lehel J. Trophic transfer and biomagnification potential of environmental contaminants (heavy metals) in aquatic ecosystems. Environ Pollut [Internet]. 2024;340:122815. doi:10.1016/j.envpol.2023.122815.
  • Han X, Wu H, Li Q, Cai W, Hu S. Assessment of heavy metal accumulation and potential risks in surface sediment of estuary area: a case study of dagu river. Mar Environ Res. 2024;196:106416. doi:10.1016/j.marenvres.2024.106416.
  • Xiang M, Li Y, Yang J, Lei K, Li Y, Li F, Zheng D, Fang X, Cao Y. Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops. Environ Pollut [Internet]. 2021;278:116911. doi:10.1016/j.envpol.2021.116911.
  • Khan A, Khan S, Khan MA, Qamar Z, Waqas M. The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environ Sci Pollut Res. 2015;22(18):13772–13799. doi:10.1007/s11356-015-4881-0.
  • Ali H, Khan E, Ilahi I. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem [Internet]. 2019;2019:1–14. doi:10.1155/2019/6730305.
  • Angon PB, Islam MdS KS, Das A, Anjum N, Poudel A, Suchi SA, Suchi SA. Sources, effects and present perspectives of heavy metals contamination: soil, plants and human food chain. Heliyon. 2024;10(7):e28357. doi:10.1016/j.heliyon.2024.e28357.
  • Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M. Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol. 2021;12:12. doi:10.3389/fphar.2021.643972.
  • Riyazuddin R, Nisha N, Ejaz B, Khan MIR, Kumar M, Ramteke PW, Gupta R. A comprehensive review on the heavy metal toxicity and sequestration in plants. Biomolecul. 2021;12(1):43. doi:10.3390/biom12010043.
  • Deng H, Tu Y, Wang H, Wang Z, Li Y, Chai L, Zhang W, Lin Z. Environmental behavior, human health effect, and pollution control of heavy metal(loid)s toward full life cycle processes. Eco-Environ Health. 2022;1(4):229–243. doi:10.1016/j.eehl.2022.11.003.
  • Bai B, Bai F, Hou J. The migration process and temperature effect of aqueous solutions contaminated by heavy metal ions in unsaturated silty soils. Heliyon. 2024;10(9):e30458. doi:10.1016/j.heliyon.2024.e30458.
  • Yang T, Zhang Y, Guo L, Li D, Liu A, Bilal M, Xie C, Yang R, Gu Z, Jiang D, et al. Antifreeze polysaccharides from wheat bran: the structural characterization and antifreeze mechanism. Biomacromolecul. 2024; doi:10.1021/acs.biomac.3c00958.
  • Raj K, Das AP. Lead pollution: impact on environment and human health and approach for a sustainable solution. Environ Chem Ecotoxicol [Internet]. 2023;5:79–85. https://www.sciencedirect.com/scien.02.001.
  • Sweta Singh S, Singh B. A review on heavy metal and metalloid contamination of vegetables: addressing the global safe food security concern. Int J Environ Anal Chem. 2022; 1–22. doi:10.1080/03067319.2022.2115890.
  • Ahmad W, Alharthy RD, Zubair M, Ahmed M, Hameed A, Rafique S. Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Sci Rep [Internet]. 2021;11(1):17006. doi:10.1038/s41598-021-94616-4.
  • Nieder R, Benbi DK. Potentially toxic elements in the environment – a review of sources, sinks, pathways and mitigation measures. Rev Environ Health. 2023;8(4):51–54. doi:10.1515/reveh-2022-0161.
  • Raj K, Das AP. Lead pollution: impact on environment and human health and approach for a sustainable solution. Environ Chem Ecotoxicol. 2023;5:79–85. doi:10.1016/j.enceco.2023.02.001.
  • Donald AN, Donald AN, Raphael PB, Raphael PB, Olumide OJ, Amarachukwu OF. The synopsis of environmental heavy metal pollution. Am J Environ Sci. 2022;18:125–134.
  • Orata F, Sifuna F. Uptake, bioaccumulation, partitioning of lead (Pb) and cadmium (Cd) in aquatic organisms in contaminated environments. In: Hauser-Davis RA, Soares Quinete N, Soledade Lemos L, editors. Lead, mercury and cadmium in the aquatic environment. Boca Raton: CRC Press; 2023. p. 166–181.
  • Lugun O, Singh R, Jha S, Kumar Pandey A. Impact of heavy metals on different ecosystems. In: Kumar A, editor. Environmental toxicology and ecosystem. Boca Raton: CRC Press; 2022. p. 139–164.
  • Botté A, Seguin C, Nahrgang J, Zaidi M, Guery J, Leignel V. Lead in the marine environment: concentrations and effects on invertebrates. Ecotoxicology. 2022;31(2):194–207. doi:10.1007/s10646-021-02504-4.
  • Meena V, Dotaniya ML, Saha JK, Das H, Patra AK. Impact of lead contamination on agroecosystem and human health. In: Gupta D, Chatterjee S, Walther C, editors. Lead in Plants and the Environment. Springer, Cham: Radionuclides and Heavy Metals in the Environment. 2020. p. 67–82. doi:10.1007/978-3-030-21638-2_4.
  • Collin MS, Venkatraman SK, Vijayakumar N, Kanimozhi V, Arbaaz SM, Stacey RGS, Anusha J, Choudhary R, Lvov V, Tovar GI, et al. Bioaccumulation of lead (Pb) and its effects on human: a review. J Hazard Mater Adv. 2022;7:100094. doi:10.1016/j.hazadv.2022.100094.
  • Osman HE, Fadhlallah RS. Impact of lead on seed germination, seedling growth, chemical composition, and forage quality of different varieties of sorghum. J Umm Al-Qura Univ Appll Sci. 2023;9(1):77–86. doi:10.1007/s43994-022-00022-5.
  • Berni R, Luyckx M, Xu X, Legay S, Sergeant K, Hausman J-F, Lutts S, Cai G, Guerriero G. Reactive oxygen species and heavy metal stress in plants: impact on the cell wall and secondary metabolism. Environ Exp Bot. 2019;161:98–106. doi:10.1016/j.envexpbot.2018.10.017.
  • Shan B, Hao R, Zhang J, Li J, Ye Y, Lu A. Microbial remediation mechanisms and applications for lead-contaminated environments. World J Microbiol Biotechnol. 2023;39(2):38. doi:10.1007/s11274-022-03484-1.
  • Mittler R, Zandalinas SI, Fichman Y, Van Breusegem F. Reactive oxygen species signalling in plant stress responses. Nat Rev Mol Cell Biol [Internet]. 2022;23(10):663–679. doi:10.1038/s41580-022-00499-2.
  • Zulfiqar U, Farooq M, Hussain S, Maqsood M, Hussain M, Ishfaq M, Ahmad M, Anjum MZ. Lead toxicity in plants: impacts and remediation. J Environ Manage [Internet]. 2019;250:109557. https://www.sciencedirect.com/science/article/pii/S0301479719312757.
  • Srivastava D, Srivastava N. Molecular mechanism of lead toxicity and tolerance in plants [Internet]. In: Kumar N. Jha A, editors. Lead toxicity: challenges and solution. Cham: Springer Nature Switzerland; 2023. p. 247–286. doi:10.1007/978-3-031-37327-5_12.
  • Pourrut B, Shahid M, Douay F, Dumat C, Pinelli E. Molecular mechanisms involved in lead uptake, toxicity and detoxification in higher plants. In: Gupta D, Corpas F, Palma J, editors. Heavy metal stress in plants. Berlin, Heidelberg: Springer; 2013. p. 121–147. doi:10.1007/978-3-642-38469-1_7.
  • Srivastava P, Bolan N, Casagrande V, Benjamin J, Adejumo SA, Sabir M, Farooqi ZUR, Sarkar A. Lead in soils: sources, bioavailability, plant uptake, and remediation. In: Kumar V, Sharma A, Setia R, editors. Appraisal Metal (Loids) Ecosyst. Elsevier; 2022. p. 331–360. doi:10.1016/B978-0-323-85621-8.00005-4.
  • Hoshino M, Zhang M, Suzuki M, Tsukimura K, Ohta M. Characterization of Pb-bearing minerals in polluted soils from closed mine sites. Water Air Soil Pollut. 2020;231(4):176. doi:10.1007/s11270-020-04548-4.
  • Evans J, Pashley V, Madgwick R, Neil S, Chenery C. Tracking natural and anthropogenic Pb exposure to its geological source. Sci Rep. 2018;8(1):1969. doi:10.1038/s41598-018-20397-y.
  • Wang T, Yao P-H, Shen C-C, Chawchai S, Torfstein A, Sinha A, Xu H, Yu T-L, Lin F, Wang X, et al. Anthropogenically-induced atmospheric Pb cycle in low-latitude Asia since the industrial revolution recorded by high-resolution stalagmites. Glob Planet Change. 2024;232:104337. doi:10.1016/j.gloplacha.2023.104337.
  • Prabhakar A, Mishra S, Das AP. Isolation and identification of lead (Pb) solubilizing bacteria from automobile waste and its potential for recovery of lead from end of life waste batteries. Geomicrobiol J. 2019;36(10):894–903. doi:10.1080/01490451.2019.1654044.
  • Sevak PI, Pushkar BK, Kapadne PN. Lead pollution and bacterial bioremediation: a review. Environ Chem Lett [Internet]. 2021;19(6):4463–4488. doi:10.1007/s10311-021-01296-7.
  • Hollingsworth A, Rudik I. The effect of leaded gasoline on elderly mortality: evidence from regulatory exemptions. Am Econ J Econ Policy. 2021;13(3):345–373. doi:10.1257/pol.20190654.
  • Selvi A, Rajasekar A, Theerthagiri J, Ananthaselvam A, Sathishkumar K, Madhavan J, Rahman PKSM. Integrated remediation processes toward heavy metal removal/recovery from various environments-a review. Front Environ Sci. 2019;7. doi:10.3389/fenvs.2019.00066.
  • Saba D, Manouchehri N, Besançon S, El Samad O, Baydoun R, Bou Khozam R, Nafeh Kassir L, Kassouf A, Chebib H, Ouaini N, et al. Bioaccessibility and radioisotopes of lead in soils around a fertilizer industry in Lebanon. Environ Geochem Health [Internet]. 2019;41(6):2749–2762. doi:10.1007/s10653-019-00320-8.
  • Kumar A, Kumar A, Cabral-Pinto M, Chaturvedi AK, Shabnam AA, Subrahmanyam G, Mondal R, Gupta DK, Malyan SK, Kumar SS, et al. Lead toxicity: health hazards, influence on food chain, and sustainable remediation approaches. Int J Environ Res And Public Health. 2020;17(7):17. doi:10.3390/ijerph17072179.
  • Xing W, Yang H, Ippolito JA, Zhang Y, Scheckel KG, Li L. Lead source and bioaccessibility in windowsill dusts within a Pb smelting-affected area. Environ Pollut [Internet]. 2020;266:115110. doi:10.1016/j.envpol.2020.115110.
  • Yusuf AA, Dankwa Ampah J, Soudagar MEM, Veza I, Kingsley U, Afrane S, Jin C, Liu H, Elfasakhany A, Buyondo KA. Effects of hybrid nanoparticle additives in n-butanol/waste plastic oil/diesel blends on combustion, particulate and gaseous emissions from diesel engine evaluated with entropy-weighted PROMETHEE II and TOPSIS: environmental and health risks of plastic waste. Energy Convers Manag [Internet]. 2022;264:115758. https://www.sciencedirect.com/science/article/pii/S0196890422005544.
  • Ankush Lamba S, Ritambhara Diwedi A, Kumar S, Singh V. Source and distribution of lead in soil and plant—a review. 2023; 3–16.
  • Sun X, Sun M, Chao Y, Shang X, Wang H, Pan H, Yang Q, Lou Y, Zhuge Y. Effects of lead pollution on soil microbial community diversity and biomass and on invertase activity. Soil Ecol Lett [Internet]. 2023;5:118–127. doi: 10.1007/s42832-022-0134-6.
  • Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E. Lead uptake, toxicity, and detoxification in plants [Internet]. In: Whitacre D, editor. Reviews of environmental contamination and toxicology volume 213. New York (NY): Springer New York; 2011. p. 113–136. doi:10.1007/978-1-4419-9860-6_4.
  • Keçeci M, Usta S, Uygur V. Lead adsorption in soils and the effect of soil properties: case study from Turkey. Environ Earth Sci [Internet]. 2020;79(18):416. doi:10.1007/s12665-020-09156-3.
  • Tarvainen T, Albanese S, Birke M, Poňavič M, Reimann C. Arsenic in agricultural and grazing land soils of Europe. Appl Geochem [Internet]. 2013;28:2–10. https://www.sciencedirect.com/science/article/pii/S0883292712002788.
  • Zheng X, Oba BT, Shen C, Rong L, Zhang B, Huang L, Feng L, Liu J, Du T, Deng Y. Effect of the bacterial community assembly process on the microbial remediation of petroleum hydrocarbon-contaminated soil. Front Microbiol [Internet]. 2023;14. https://www.frontiersin.org/articles/10.3389/fmicb.2023.1196610.
  • Hou X, Han H, Tigabu M, Li Q, Li Z, Zhu C, Huang S, Cai L, Liu A. Lead contamination alters enzyme activities and microbial composition in the rhizosphere soil of the hyperaccumulator pogonatherum crinitum. Ecotoxicol Environ Saf [Internet]. 2021;207:111308. https://www.sciencedirect.com/science/article/pii/S0147651320311453.
  • Chu Q, Feng W, Tian Y, Zhang L, Kang F, Zhao Y, Yuan W, Hou D, Shi L, Guo J, et al. Soil microbial community contributes more to plant-soil feedback and plant-plant interactions than root traits under warming and drought. Plant Soil. 2024; doi:10.1007/s11104-024-06606-w.
  • Sharma M, Kant R, Sharma AK, Sharma AK. Exploring the impact of heavy metals toxicity in the aquatic ecosystem. Int J Energy Water Resour. 2024; doi:10.1007/s42108-024-00284-1.
  • Kohli SK, Handa N, Bali S, Khanna K, Arora S, Sharma A, Bhardwaj R. Current scenario of Pb toxicity in plants: unraveling plethora of physiological responses. Rev Environ Contam T. 2010;249:153–197. doi:10.1007/398_2019_25.
  • Afzal MR, Naz M, Wan J, Dai Z, Ullah R, Ur Rehman S, Du D. Insights into the mechanisms involved in lead (Pb) tolerance in invasive plants—the current status of understanding. Plants. 2023;12(11):2084. doi:10.3390/plants12112084.
  • Ye M, Yang J, Li J, Wang Y, Chen W, Zhu L, Wang T, Liu J, Geng D, Yu Z. Progress in mechanisms, pathways and cohort studies about the effects of PM2.5 exposure on the central nervous system. Rev Environ Contam Toxicol [Internet]. 2023;261(1):7. doi:10.1007/s44169-023-00034-0.
  • Pant D, Singh P. Pollution due to hazardous glass waste. Environ Sci Pollut Res. 2014;21(4):2414–2436. doi:10.1007/s11356-013-2337-y.
  • Tomkins M, Hughes A, Morris RJ. An update on passive transport in and out of plant cells. Plant Physiol. 2021;187(4):1973–1984. doi:10.1093/plphys/kiab406.
  • Kulbacka J, Choromańska A, Rossowska J, Weżgowiec J, Saczko J, Rols M-P Cell membrane transport mechanisms: ion channels and electrical properties of cell membranes. In: Kulbacka J, Satkauskas S, editors. Transport Across Natural and Modified Biological Membranes and its Implications in Physiology and Therapy. Springer, Cham: Advances in Anatomy, Embryology and Cell Biology. 2017. p. 39–58 doi:10.1007/978-3-319-56895-9_3.
  • Yang Z, Yang F, Liu J-L, H-T W, Yang H, Shi Y, Liu J, Zhang Y-F, Luo Y-R, Chen K-M. Heavy metal transporters: functional mechanisms, regulation, and application in phytoremediation. Sci Total Environ. 2022;809:151099. doi:10.1016/j.scitotenv.2021.151099.
  • Mani A, Sankaranarayanan K. Natural resistance-associated macrophage proteins (NRAMPs): functional significance of metal transport in plants. In: Kumar K, Srivastava S, editors. Plant metal and metalloid transporters. Singapore: Springer Nature Singapore; 2022. p. 91–107. doi:10.1007/978-981-19-6103-8_5.
  • Hart G, Gilly A, Koether M, McElroy T, Greipsson S. Phytoextraction of lead (Pb) contaminated soil by switchgrass (Panicum virgatum L): impact of BAP and NTA applications. Front Energy Res. 2022;10:10. doi:10.3389/fenrg.2022.1032404.
  • Kumar B, Smita K, Cumbal Flores L. Plant mediated detoxification of mercury and lead. Arabian J Chem [Internet]. 2017;10:S2335–42. doi:10.1016/j.arabjc.2013.08.010.
  • Molefe RR, Amoo AE, Babalola OO. Communication between plant roots and the soil microbiome; involvement in plant growth and development. Symbiosis [Internet]. 2023;90(3):231–239. doi:10.1007/s13199-023-00941-9.
  • Robbins NE, Trontin C, Duan L, Dinneny JR. Beyond the barrier: communication in the root through the endodermis. Plant Physiol. 2014;166(2):551–559. doi:10.1104/pp.114.244871.
  • Costello MCS, Lee LS. Sources, fate, and plant uptake in agricultural systems of per- and polyfluoroalkyl substances. Curr Pollut Rep. 2020; doi:10.1007/s40726-020-00168-y.
  • Usman K, Abu-Dieyeh MH, Zouari N, Al-Ghouti MA. Lead (Pb) bioaccumulation and antioxidative responses in tetraena qataranse. Sci Rep. 2020;10(1):17070. doi:10.1038/s41598-020-73621-z.
  • Fernández V, Gil‐Pelegrín E, Eichert T. Foliar water and solute absorption: an update. Plant Journal. 2021;105(4):870–883. doi:10.1111/tpj.15090.
  • Coskun D, White PJ. Ion-uptake mechanisms of individual cells and roots: short-distance transport. In: Rengel Z, Cakmak I, White PJ, editors. Marschner’s mineral nutrition of plants. Academic Press; 2023. p. 11–71. doi:10.1016/B978-0-12-819773-8.00018-6.
  • Berry ZC, Emery NC, Gotsch SG, Goldsmith GR. Foliar water uptake: processes, pathways, and integration into plant water budgets. Plant, Cell & Environ. 2019;42(2):410–423. doi:10.1111/pce.13439.
  • Aslam M, Aslam A, Sheraz M, Ali B, Ulhassan Z, Najeeb U, Zhou W, Gill RA. Lead toxicity in cereals: mechanistic insight into toxicity, mode of action, and management. Front Plant Sci. 2021;11:11. doi:10.3389/fpls.2020.587785.
  • Tedersoo L, Bahram M, Zobel M. How mycorrhizal associations drive plant population and community biology. Science. 2020;367(6480). doi:10.1126/science.aba1223.
  • Liesche J, Patrick J. An update on phloem transport: a simple bulk flow under complex regulation. F1000Res. 2017;6:2096. doi:10.12688/f1000research.12577.1.
  • Dalyan E, Yüzbaşıoğlu E, Akpınar I. Physiological and biochemical changes in plant growth and different plant enzymes in response to lead stress. In: Gupta D, Chatterjee S, Walther C, editors. Lead in Plants and the Environment. Springer, Cham: Radionuclides and Heavy Metals in the Environment; 2020. p. 129–147. doi:10.1007/978-3-030-21638-2_8.
  • Ashraf U, Mahmood M-R, Hussain S, Abbas F, Anjum SA, Tang X. Lead (Pb) distribution and accumulation in different plant parts and its associations with grain Pb contents in fragrant rice. Chemosph. 2020;248:126003. doi:10.1016/j.chemosphere.2020.126003.
  • Esbaugh AJ, Brix KV, Mager EM, De Schamphelaere K, Grosell M. Multi-linear regression analysis, preliminary biotic ligand modeling, and cross species comparison of the effects of water chemistry on chronic lead toxicity in invertebrates. Comp Biochem Physiol C: Toxicol Pharmacol [Internet]. 2012;155:423–431. https://www.sciencedirect.com/science/article/pii/S1532045611002213.
  • Muratore C, Espen L, Prinsi B. Nitrogen uptake in plants: the plasma membrane root transport systems from a physiological and proteomic perspective. Plants. 2021;10(4):681. doi:10.3390/plants10040681.
  • Johnson R, Vishwakarma K, Hossen M, Kumar V, Shackira AM, Puthur JT, Abdi G, Sarraf M, Hasanuzzaman M. Potassium in plants: growth regulation, signaling, and environmental stress tolerance. Plant Physiol Bioch. 2022;172:56–69. doi:10.1016/j.plaphy.2022.01.001.
  • Ur Rahman S, Qin A, Zain M, Mushtaq Z, Mehmood F, Riaz L, Naveed S, Ansari MJ, Saeed M, Ahmad I, et al. Pb uptake, accumulation, and translocation in plants: plant physiological, biochemical, and molecular response: a review. Heliyon. 2024;10(6):e27724. doi:10.1016/j.heliyon.2024.e27724.
  • Soltabayeva A, Ongaltay A, Omondi JO, Srivastava S. Morphological, physiological and molecular markers for salt-stressed plants. Plants. 2021;10(2):243. doi:10.3390/plants10020243.
  • Ghouri F, Sarwar S, Sun L, Riaz M, Haider FU, Ashraf H, Lai M, Imran M, Liu J, Ali S, et al. Silicon and iron nanoparticles protect rice against lead (Pb) stress by improving oxidative tolerance and minimizing Pb uptake. Sci Rep. 2024;14(1):5986. doi:10.1038/s41598-024-55810-2.
  • Jia Z, Giehl RFH, von Wirén N. Nutrient–hormone relations: driving root plasticity in plants. Mol Plant. 2022;15(1):86–103. doi:10.1016/j.molp.2021.12.004.
  • Ali M, Nas FS. The effect of lead on plants in terms of growing and biochemical parameters: a review. MOJ Ecol & Environ Sci. 2018;3(4):3. doi:10.15406/mojes.2018.03.00098.
  • Kanwal A, Farhan M, Sharif F, Hayyat MU, Shahzad L, Ghafoor GZ. Effect of industrial wastewater on wheat germination, growth, yield, nutrients and bioaccumulation of lead. Sci Rep [Internet]. 2020;10(1):11361. doi:10.1038/s41598-020-68208-7.
  • Rădulescu A, Lundgren S. A pharmacokinetic model of lead absorption and calcium competitive dynamics. Sci Rep [Internet]. 2019;9(1):14225. doi:10.1038/s41598-019-50654-7.
  • Opeolu BO, Adenuga OO, Ndakidemi PA, Olujimi OO. Assessment of phyto-toxicity potential of lead on tomato (Lycopersicon esculentum L) planted on contaminated soils [Internet]. 2010. http://www.academicjournals.org/IJPS.
  • Sofy MR, Seleiman MF, Alhammad BA, Alharbi BM, Mohamed HI. Minimizing adverse effects of pb on maize plants by combined treatment with jasmonic, salicylic acids and proline. Agronomy. 2020;10(5):10. doi:10.3390/agronomy10050699.
  • Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Ind J Clin Biochem. 2015;30(1):11–26. doi:10.1007/s12291-014-0446-0.
  • Chaudhary P, Janmeda P, Docea AO, Yeskaliyeva B, Abdull Razis AF, Modu B, Calina D, Sharifi-Rad J. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Front Chem. 2023;11:11. doi:10.3389/fchem.2023.1158198.
  • Ilyas MZ, Sa KJ, Ali MW, Lee JK. Toxic effects of lead on plants: integrating multi-omics with bioinformatics to develop Pb-tolerant crops. Planta. 2024;259(1):18. doi:10.1007/s00425-023-04296-9.
  • Forman HJ, Zhang H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov. 2021;20(9):689–709. doi:10.1038/s41573-021-00233-1.
  • Selwal N, Rahayu F, Herwati A, Latifah E, Supriyono S, Suhara C, Kade Suastika IB, Mahayu WM, Wani AK. Enhancing secondary metabolite production in plants: exploring traditional and modern strategies. J Agric Food Res. 2023;14:100702. doi:10.1016/j.jafr.2023.100702.
  • Gusti AMT, Qusti SY, Alshammari EM, Toraih EA, Fawzy MS. Antioxidants-related Superoxide Dismutase (SOD), Catalase (CAT), Glutathione Peroxidase (GPX), Glutathione-S-Transferase (GST), and Nitric Oxide Synthase (NOS) gene variants analysis in an obese population: a preliminary case-control study. Antioxidants. 2021;10(4):595. doi:10.3390/antiox10040595.
  • Valgimigli L. Lipid peroxidation and antioxidant protection. Biomolecules. 2023;13(9):1291. doi:10.3390/biom13091291.
  • Usman M, Anastopoulos I, Hamid Y, Wakeel A. Recent trends in the use of fly ash for the adsorption of pollutants in contaminated wastewater and soils: effects on soil quality and plant growth. Environ Sci Pollut Res [Internet]. 2022; doi:10.1007/s11356-022-19192-0.
  • Navabpour S, Yamchi A, Bagherikia S, Kafi H. Lead-induced oxidative stress and role of antioxidant defense in wheat (Triticum aestivum L.). Physiol Mol Biol Plants. 2020;26(4):793–802. doi:10.1007/s12298-020-00777-3.
  • Gupta N, Singh PM, Sagar V, Pandya A, Chinnappa M, Kumar R, Bahadur A. Seed priming with ZnO and Fe3O4 nanoparticles alleviate the lead toxicity in basella alba L through reduced lead uptake and regulation of ROS. Plants. 2022;11(17):11. doi:10.3390/plants11172227.
  • Nyiramigisha P, Komariah S. Harmful impacts of heavy metal contamination in the soil and crops grown around dumpsites. Rev In Agric Sci. 2021;9:271–282.
  • Dias MC, Mariz-Ponte N, Santos C. Lead induces oxidative stress in Pisum sativum plants and changes the levels of phytohormones with antioxidant role. Plant Physiol BiochPlant Physiology and Biochemistry [Internet]. 2019;137:121–129. doi:10.1016/j.plaphy.2019.02.005.
  • Rawat J, Pandey N, Saxena J. Role of potassium in plant photosynthesis, transport, growth and yield [Internet]. In: Iqbal N. Umar S, editors. Role of potassium in abiotic stress. Singapore: Springer Nature Singapore; 2022. p. 1–14. doi:10.1007/978-981-16-4461-0_1.
  • Nguyen HC, Lin KH, Hsiung TC, Huang MY, Yang CM, Weng JH, Hsu MH, Chen PY, Chang KC. Biochemical and physiological characteristics of photosynthesis in plants of two calathea species. Int J Mol Sci. 2018;19(3):704. doi:10.3390/ijms19030704.
  • Sharma A, Kumar V, Shahzad B, Ramakrishnan M, Singh Sidhu GP, Bali AS, Handa N, Kapoor D, Yadav P, Khanna K, et al. Photosynthetic response of plants under different abiotic stresses: a review. J Plant Growth Regul [Internet]. 2020;39(2):509–531. doi:10.1007/s00344-019-10018-x.
  • Mroczek-Zdyrska M, Wójcik M. The influence of selenium on root growth and oxidative stress induced by lead in Vicia faba L minor plants. Biol Trace Elem Res [Internet]. 2012;147(1–3):320–328. doi:10.1007/s12011-011-9292-6.
  • Hu X, Khan I, Jiao Q, Zada A, Jia T. Chlorophyllase, a common plant hydrolase enzyme with a long history, is still a puzzle. Genes (Basel). 2021;12(12):12. doi:10.3390/genes12121871.
  • Seregin IV, Kozhevnikova AD. Distribution of cadmium, lead, nickel, and strontium in imbibing maize caryopses. Russ J Plant Physiol. 2005;52(4):565–569. doi:10.1007/s11183-005-0084-8.
  • Lima-Melo Y, Kılıç M, Aro E-M, Gollan PJ. Photosystem I inhibition, protection and signalling: knowns and unknowns. Front Plant Sci [Internet]. 2021;12. https://www.frontiersin.org/articles/10.3389/fpls.2021.791124.
  • Giannakoula A, Therios I, Chatzissavvidis C. Effect of lead and copper on photosynthetic apparatus in citrus (Citrus aurantium l.) plants. The role of antioxidants in oxidative damage as a response to heavy metal stress. Plants. 2021;10(1):1–14. doi:10.3390/plants10010155.
  • Wani AL, Ara A, Usmani JA. Lead toxicity: a review. Interdiscip Toxicol [Internet]. 2015;8(2):55–64. doi:10.1515/intox-2015-0009.
  • Rizwan M, Ali S, Rehman MZ, Javed MR, Bashir A. Lead toxicity in cereals and its management strategies: a critical review. Water Air Soil Pollut [Internet]. 2018;229(6):211. doi:10.1007/s11270-018-3865-3.
  • Pirzadah TB, Malik B, Tahir I, Hakeem KR, Alharby HF, Rehman RU. Lead toxicity alters the antioxidant defense machinery and modulate the biomarkers in tartary buckwheat plants. Int Biodeterior Biodegradation [Internet]. 2020;151:104992. https://www.sciencedirect.com/science/article/pii/S0964830520302110.
  • Wu T-Y, Goh H, Azodi CB, Krishnamoorthi S, Liu M-J, Urano D. Evolutionarily conserved hierarchical gene regulatory networks for plant salt stress response. Nat Plants. 2021;7(6):787–799. doi:10.1038/s41477-021-00929-7.
  • Yang R, Li X, Yang Q, Zhao M, Bai W, Liang Y, Liu X, Gao B, Zhang D. Transcriptional profiling analysis providing insights into desiccation tolerance mechanisms of the desert moss syntrichia caninervis. Front Plant Sci. 2023;14:14. doi:10.3389/fpls.2023.1127541.
  • Hotamisligil GS, Davis RJ. Cell signaling and stress responses. Cold Spring Harb Perspect Biol. 2016;8(10):a006072. doi:10.1101/cshperspect.a006072.
  • Yip Delormel T, Boudsocq M. Properties and functions of calcium‐dependent protein kinases and their relatives in Arabidopsis thaliana. New Phytol. 2019;224(2):585–604. doi:10.1111/nph.16088.
  • Lucibelli F, Valoroso MC, Aceto S. Plant DNA methylation: an epigenetic mark in development, environmental interactions, and evolution. Int J Mol Sci. 2022;23(15):8299. doi:10.3390/ijms23158299.
  • Abdulraheem MI, Xiong Y, Moshood AY, Cadenas-Pliego G, Zhang H, Hu J. Mechanisms of plant epigenetic regulation in response to plant stress: recent discoveries and implications. Plants. 2024;13(2):163. doi:10.3390/plants13020163.
  • Yadav VK, Amari A, Gacem A, Elboughdiri N, Eltayeb LB, Fulekar MH. Treatment of fly-ash-contaminated wastewater loaded with heavy metals by using fly-ash-synthesized iron oxide nanoparticles. Water (Switzerland). 2023;15(5):15. doi:10.3390/w15050908.
  • Yadav VK, Ali D, Khan SH, Gnanamoorthy G, Choudhary N, Yadav KK, Thai VN, Hussain SA, Manhrdas S. Synthesis and characterization of amorphous iron oxide nanoparticles by the sonochemical method and their application for the remediation of heavy metals from wastewater. Nanomaterials. 2020;10(8):1551. doi:10.3390/nano10081551.
  • Li S, Han X, Lu Z, Qiu W, Yu M, Li H, He Z, Zhuo R. MAPK cascades and transcriptional factors: regulation of heavy metal tolerance in plants. Int J Mol Sci. 2022;23(8):23. doi:10.3390/ijms23084463.
  • Dvořák P, Krasylenko Y, Zeiner A, Šamaj J, Takáč T. Signaling toward reactive oxygen species-scavenging enzymes in plants. Front Plant Sci [Internet]. 2021;11:11. doi:10.3389/fpls.2020.618835.
  • Arsova B, Watt M, Usadel B. Monitoring of plant protein post-translational modifications using targeted proteomics. Front Plant Sci [Internet]. 2018;9. doi:10.3389/fpls.2018.01168.
  • Moeen-Ud-Din M, Yang S, Wang J. Auxin homeostasis in plant responses to heavy metal stress. Plant Physiol and Biochemistry [Internet]. 2023;205:108210. doi:10.1016/j.plaphy.2023.108210.
  • Liu Q, Wang S, Wen J, Chen J, Sun Y, Dong S. Genome-wide identification and analysis of the WRKY gene family and low-temperature stress response in Prunus sibirica. BMC Genomics [Internet]. 2023;24(1):358. doi:10.1186/s12864-023-09469-0.
  • Tang W, Wang F, Chu H, You M, Lv Q, Ji W, Deng X, Zhou B, Peng D. WRKY transcription factors regulate phosphate uptake in plants. Environ Exp Bot [Internet]. 2023;208:105241. https://www.sciencedirect.com/science/article/pii/S0098847223000369.
  • Wani SH, Anand S, Singh B, Bohra A, Joshi R. WRKY transcription factors and plant defense responses: latest discoveries and future prospects. Plant Cell Rep [Internet]. 2021;40(7):1071–1085. doi:10.1007/s00299-021-02691-8.
  • Rasheed A, Khan AA, Nawaz M, Mahmood A, Arif U, Hassan MU, Iqbal J, Saleem MH, Ali B, Fahad S. Development of aluminium (Al)-tolerant soybean using molecular tools: limitations and future directions. J Plant Growth Regul. 2023;42(12):7403–7417. doi:10.1007/s00344-023-11051-7.
  • Li CX, Yan JY, Ren JY, Sun L, Xu C, Li GX, Ding ZJ, Zheng SJ. A WRKY transcription factor confers aluminum tolerance via regulation of cell wall modifying genes. J Integr Plant Biol. 2020;62(8):1176–1192. doi:10.1111/jipb.12888.
  • Han Y, Fan T, Zhu X, Wu X, Ouyang J, Jiang L, Cao S. WRKY12 represses GSH1 expression to negatively regulate cadmium tolerance in arabidopsis. Plant Mol Biol. 2019;99(1–2):149–159. doi:10.1007/s11103-018-0809-7.
  • Abdullah-Zawawi M-R, Ahmad-Nizammuddin N-F, Govender N, Harun S, Mohd-Assaad N, Mohamed-Hussein Z-A. Comparative genome-wide analysis of WRKY, MADS-box and MYB transcription factor families in Arabidopsis and rice. Sci Rep [Internet]. 2021;11(1):19678. doi:10.1038/s41598-021-99206-y.
  • Ma J, Wang L, Dai J, Wang Y, Lin D. The NAC-type transcription factor CaNAC46 regulates the salt and drought tolerance of transgenic Arabidopsis thaliana. BMC Plant Biol [Internet]. 2021;21(1):11. doi:10.1186/s12870-020-02764-y.
  • Bian Z, Gao H, Wang C. NAC transcription factors as positive or negative regulators during ongoing battle between pathogens and our food crops. Int J Mol Sci. 2020;22(1):1–21. doi:10.3390/ijms22010081.
  • Masri R, Kiss E. The role of NAC genes in response to biotic stresses in plants. Physiol Mol Plant Pathol [Internet]. 2023;126:102034. https://www.sciencedirect.com/science/article/pii/S0885576523000899.
  • Fraga OT, de Melo BP, Quadros IPS, Reis PAB, Fontes EPB. Senescence-associated glycine max (Gm)nac genes: integration of natural and stress-induced leaf senescence. Int J Mol Sci. 2021;22(15):22. doi:10.3390/ijms22158287.
  • Waadt R, Seller CA, Hsu P-K, Takahashi Y, Munemasa S, Schroeder JI. Plant hormone regulation of abiotic stress responses. Nat Rev Mol Cell Biol [Internet]. 2022;23(10):680–694. doi:10.1038/s41580-022-00479-6.
  • Yuan X, Wang H, Cai J, Li D, Song F. NAC transcription factors in plant immunity. Phytopathol Res. 2019;1(1):3. doi:10.1186/s42483-018-0008-0.
  • Wang Z, Zhang Z, Wang P, Qin C, He L, Kong L, Ren W, Liu X, Ma W. Genome-wide identification of the NAC transcription factors family and regulation of metabolites under salt stress in isatis indigotica. Int J Biol Macromol [Internet]. 2023;240:124436. https://www.sciencedirect.com/science/article/pii/S0141813023013302.
  • Shao H, Wang H, Tang X. NAC transcription factors in plant multiple abiotic stress responses: progress and prospects. Front Plant Sci. 2015;6:6. doi:10.3389/fpls.2015.00902.
  • Zhang Y, Xu J, Li R, Ge Y, Li Y, Li R. Plants’ response to abiotic stress: mechanisms and strategies. Int J Mol Sci. 2023;24(13):10915. doi:10.3390/ijms241310915.
  • Kaur S, Samota MK, Choudhary M, Choudhary M, Pandey AK, Sharma A, Thakur J. How do plants defend themselves against pathogens-biochemical mechanisms and genetic interventions. Physiol Mol Biol Plants. 2022;28(2):485–504. doi:10.1007/s12298-022-01146-y.
  • Li H, Huang X, Zhan A. Context-dependent antioxidant defense system (ADS)-based stress memory in response to recurrent environmental challenges in congeneric invasive species. Mar Life Sci Technol. 2024;6(2):315–330. doi:10.1007/s42995-024-00228-y.
  • Das K, Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci. 2014;2. doi:10.3389/fenvs.2014.00053.
  • Gidlow D. Lead toxicity. Occup Med (Chic Ill) [Internet]. 2015;65(9):770. doi:10.1093/occmed/kqv170.
  • Navarro-Espíndola R, Suaste-Olmos F, Peraza-Reyes L. Dynamic regulation of peroxisomes and mitochondria during fungal development. J Fungi (Basel). 2020;6(4):302–330. doi:10.3390/jof6040302.
  • Mir RA, Khah MA. Recent progress in enzymatic antioxidant defense system in plants against different environmental stresses. In: Ahanger MA, Bhat AH, Ahmad P, John R, editors. Improving stress resilience in plants. Academic Press; 2024. p. 203–224. doi:10.1016/B978-0-443-18927-2.00014-5.
  • Kapoor D, Singh S, Kumar V, Romero R, Prasad R, Singh J. Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Plant Gene. 2019;19:100182. doi:10.1016/j.plgene.2019.100182.
  • Irato P, Santovito G. Enzymatic and non-enzymatic molecules with antioxidant function. Antioxidants. 2021;10(4):579. doi:10.3390/antiox10040579.
  • Szalai G, Kellős T, Galiba G, Kocsy G. Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. J Plant Growth Regul. 2009;28:66–80.
  • Gęgotek A, Skrzydlewska E. Antioxidative and anti-inflammatory activity of ascorbic acid. Antioxidants. 2022;11(10):1993. doi:10.3390/antiox11101993.
  • Li S, Khoso MA, Wu J, Yu B, Wagan S, Liu L. Exploring the mechanisms of WRKY transcription factors and regulated pathways in response to abiotic stress. Plant Stress. 2024;12:100429. doi:10.1016/j.stress.2024.100429.
  • Kan Q, Li Q. Post-transcriptional and translational regulation of plant gene expression by transposons. Curr Opin Plant Biol. 2023;75:102438. doi:10.1016/j.pbi.2023.102438.
  • Kumar A, Prasad MNV. Plant-lead interactions: transport, toxicity, tolerance, and detoxification mechanisms. Ecotoxicol Environ Saf. 2018;166:401–418. doi:10.1016/j.ecoenv.2018.09.113.
  • Zhou C, Huang M, Li Y, Luo J, Cai L. Changes in subcellular distribution and antioxidant compounds involved in Pb accumulation and detoxification in Neyraudia reynaudiana. Environ Sci Pollut Res. 2016;23(21):21794–21804. ping. doi:10.1007/s11356-016-7362-1.
  • Guan Y, Hwarari D, Korboe HM, Ahmad B, Cao Y, Movahedi A, Yang L. Low temperature stress-induced perception and molecular signaling pathways in plants. Environ Exp Bot. 2023;207:105190. doi:10.1016/j.envexpbot.2022.105190.
  • Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020;18(11):607–621. doi:10.1038/s41579-020-0412-1.
  • Solomon W, Janda T, Molnár Z. Unveiling the significance of rhizosphere: implications for plant growth, stress response, and sustainable agriculture. Plant Physiol Biochem. 2024;206:108290. doi:10.1016/j.plaphy.2023.108290.
  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH. Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol. 2013;11(11):789–799. doi:10.1038/nrmicro3109.
  • Etesami H, Jeong BR, Glick BR. Contribution of arbuscular mycorrhizal fungi, phosphate–solubilizing bacteria, and silicon to P uptake by plant. Front Plant Sci. 2021;12:12. doi:10.3389/fpls.2021.699618.
  • de Faria MR, Costa LSAS, Chiaramonte JB, Bettiol W, Mendes R. The rhizosphere microbiome: functions, dynamics, and role in plant protection. Trop Plant Pathol. 2021;46:13–25.
  • Huang X-F, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM. Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany. 2014;92(4):267–275. doi:10.1139/cjb-2013-0225.
  • Khoso MA, Wagan S, Alam I, Hussain A, Ali Q, Saha S, Poudel TR, Manghwar H, Liu F. Impact of plant growth-promoting rhizobacteria (PGPR) on plant nutrition and root characteristics: current perspective. Plant Stress. 2024;11:100341. doi:10.1016/j.stress.2023.100341.
  • Cao M, Narayanan M, Shi X, Chen X, Li Z, Ma Y. Optimistic contributions of plant growth-promoting bacteria for sustainable agriculture and climate stress alleviation. Environ Res. 2023;217:114924. doi:10.1016/j.envres.2022.114924.
  • Bashir SS, Hussain A, Hussain SJ, Wani OA, Zahid Nabi S, Dar NA, Baloch FS, Mansoor S. Plant drought stress tolerance: understanding its physiological, biochemical and molecular mechanisms. Biotechnol Biotechnol Equip. 2021;35(1):1912–1925. doi:10.1080/13102818.2021.2020161.
  • Jain S, Jain J, Singh J. The rhizosphere microbiome: microbial communities and plant health. In: Varma, A, Tripathi S, Prasad R, editors. Plant microbiome paradigm. Cham: Springer International Publishing; 2020. p. 175–190.
  • Tao Z, Yan F, Hahn M, Ma Z. Regulatory roles of epigenetic modifications in plant-phytopathogen interactions. Crop Health. 2023;1(1):6. doi:10.1007/s44297-023-00003-y.
  • Lu Y, Bu Q, Chuan M, Cui X, Zhao Y, Zhou D. Metabolic regulation of the plant epigenome. Plant Journal. 2023;114(5):1001–1013. doi:10.1111/tpj.16122.
  • Dinkar V, Pandey S, Kumar A, Shiv A, Lal D, Bharati A, Joshi A, Adhikari S, Aparna Singh A, Singh A, et al. Epigenetic regulations under plant stress: a cereals perspective. Environ Exp Bot. 2024;220:105688. doi:10.1016/j.envexpbot.2024.105688.
  • Singh A, Behera C. Strategies, opportunities, and challenges in crop genetic diversity conservation: a plant Breeder’s perspective. In: Kumar A, Choudhury B, Dayanandan S, Khan ML, editors. Molecular genetics and genomics tools in biodiversity conservation. Singapore: Springer Nature Singapore; 2022. p. 151–169.
  • Agarwal G, Kudapa H, Ramalingam A, Choudhary D, Sinha P, Garg V, Singh VK, Patil GB, Pandey MK, Nguyen HT, et al. Epigenetics and epigenomics: underlying mechanisms, relevance, and implications in crop improvement. Funct Integr Genomic. 2020;20(6):739–761. doi:10.1007/s10142-020-00756-7.
  • Dhar GA, Saha S, Mitra P, Nag Chaudhuri R. DNA methylation and regulation of gene expression: guardian of our health. The Nucleus. 2021;64(3):259–270. doi:10.1007/s13237-021-00367-y.
  • Nitsch S, Zorro Shahidian L, Schneider R. Histone acylations and chromatin dynamics: concepts, challenges, and links to metabolism. EMBO Rep. 2021;22(7):22. doi:10.15252/embr.202152774.
  • Ueda M, Seki M. Histone modifications form epigenetic regulatory networks to regulate abiotic stress response. Plant Physiol. 2020;182(1):15–26. doi:10.1104/pp.19.00988.
  • Chen X, Rechavi O. Plant and animal small RNA communications between cells and organisms. Nat Rev Mol Cell Biol. 2022;23(3):185–203. doi:10.1038/s41580-021-00425-y.
  • Chhatwal H, Naik J, Pandey A, Trivedi PK. Broadening the epigenetic horizon of abiotic stress response in plants. Plant Growth Regul. 2024; doi:10.1007/s10725-024-01152-y.
  • Chen X, Xu H, Shu X, Song C-X. Mapping epigenetic modifications by sequencing technologies. Cell Death Differ. 2023; doi:10.1038/s41418-023-01213-1.
  • Chang Y, Zhu C, Jiang J, Zhang H, Zhu J, Duan C. Epigenetic regulation in plant abiotic stress responses. J Integr Plant Biol. 2020;62(5):563–580. doi:10.1111/jipb.12901.
  • Rigoletto M, Calza P, Gaggero E, Malandrino M, Fabbri D. Bioremediation methods for the recovery of lead-contaminated soils: a review. Appl Scis (Switzerland). 2020;10(10):3528. doi:10.3390/app10103528.
  • Kafle A, Timilsina A, Gautam A, Adhikari K, Bhattarai A, Aryal N. Phytoremediation: mechanisms, plant selection and enhancement by natural and synthetic agents. Environ Adv [Internet]. 2022;8:100203. https://www.sciencedirect.com/science/article/pii/S2666765722000394.
  • Liu L, Li W, Song W, Guo M. Remediation techniques for heavy metal-contaminated soils: principles and applicability. Sci Total Environ. 2018;633:206–219. doi:10.1016/j.scitotenv.2018.03.161.
  • Azhar U, Ahmad H, Shafqat H, Babar M, Shahzad Munir HM, Sagir M, Arif M, Hassan A, Rachmadona N, Rajendran S, et al. Remediation techniques for elimination of heavy metal pollutants from soil: a review. Environ Res. 2022;214:113918. doi:10.1016/j.envres.2022.113918.
  • Aparicio JD, Raimondo EE, Saez JM, Costa-Gutierrez SB, Álvarez A, Benimeli CS, Polti MA. The current approach to soil remediation: a review of physicochemical and biological technologies, and the potential of their strategic combination. J Environ Chem Eng. 2022;10:107141.
  • Yao X, Saikawa E, Warner S, D’Souza PE, Ryan PB, Barr DB. Phytoremediation of lead-contaminated soil in the Westside of Atlanta, GA. Geohealth [Internet]. 2023;7(8):e2022GH000752. doi:10.1029/2022GH000752.
  • Alaboudi KA, Ahmed B, Brodie G. Phytoremediation of Pb and Cd contaminated soils by using sunflower (helianthus annuus) plant. Ann Agric Sci [Internet]. 2018;63(1):123–127. doi:10.1016/j.aoas.2018.05.007.
  • Attanayake CP, Hettiarachchi GM, Martin S, Pierzynski GM. Potential bioavailability of lead, arsenic, and polycyclic aromatic hydrocarbons in compost-amended urban soils. J Environ Qual. 2015;44(3):930–944. doi:10.2134/jeq2014.09.0400.
  • Seth CS, Misra V, Singh RR, Zolla L. EDTA-enhanced lead phytoremediation in sunflower (Helianthus annuus L.) hydroponic culture. Plant Soil [Internet]. 2011;347(1–2):231–242. doi:10.1007/s11104-011-0841-8.
  • Rizzi L, Petruzzelli G, Poggio G, Guidi GV. Soil physical changes and plant availability of Zn and Pb in a treatability test of phytostabilization. Chemosphere [Internet]. 2004;57(9):1039–1046. doi:10.1016/j.chemosphere.2004.08.048.
  • Kumpiene J, Lagerkvist A, Maurice C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments – a review. Waste Manage (Oxford) [Internet]. 2008;28(1):215–225. doi:10.1016/j.wasman.2006.12.012.
  • Bourak K, Sare AR, Allaoui A, Jijakli MH, Massart S. Impact of two phosphorus fertilizer formulations on wheat physiology, rhizosphere, and rhizoplane microbiota. Int J Mol Sci. 2023;24(12):24. doi:10.3390/ijms24129879.
  • da Silva LI, Pereira MC, de Carvalho AMX, Buttrós VH, Pasqual M, Dória J. Phosphorus-solubilizing microorganisms: a key to sustainable agriculture. Agricult (Switzerland). 2023;13(2):462. doi:10.3390/agriculture13020462.
  • Prathap V, Kumar A, Maheshwari C, Tyagi A. Phosphorus homeostasis: acquisition, sensing, and long-distance signaling in plants. Mol Biol Rep [Internet]. 2022;49(8):8071–8086. doi:10.1007/s11033-022-07354-9.
  • Kumar K, Shinde A, Aeron V, Verma A, Arif NS. Genetic engineering of plants for phytoremediation: advances and challenges. J Plant Biochem Biotechnol. 2023;32(1):12–30. doi:10.1007/s13562-022-00776-3.
  • Upadhyay SK, Srivastava AK, Rajput VD, Chauhan PK, Bhojiya AA, Jain D, Chaubey G, Dwivedi P, Sharma B, Minkina T. Root exudates: mechanistic insight of plant growth promoting rhizobacteria for sustainable crop production. Front Microbiol. 2022;13. doi:10.3389/fmicb.2022.916488.
  • Islam MM, Saxena N, Sharma D. Phytoremediation as a green and sustainable prospective method for heavy metal contamination: a review. RSC Sustain. 2024;2(5):1269–1288. doi:10.1039/D3SU00440F.
  • Grzegórska A, Rybarczyk P, Rogala A, Zabrocki D. Phytoremediation—from environment cleaning to energy generation—current status and future perspectives. Energies (Basel). 2020;13(11):2905. doi:10.3390/en13112905.
  • Simmer RA, Schnoor JL. Phytoremediation, bioaugmentation, and the plant microbiome. Environ Sci Technol. 2022;56(23):16602–16610. doi:10.1021/acs.est.2c05970.
  • Adeoye AO, Adebayo IA, Afodun AM, Ajijolakewu KA. Benefits and limitations of phytoremediation: heavy metal remediation review. In: Bhat RA, Tonelli FMP, Dar GH, Hakeem K, editors. Phytoremediation Academic Press; 2022. p. 227–238. doi:10.1016/B978-0-323-89874-4.00002-9.
  • Wang J, Aghajani Delavar M. Techno-economic analysis of phytoremediation: a strategic rethinking. Sci Total Environ. 2023;902:165949. doi:10.1016/j.scitotenv.2023.165949.
  • Alsafran M, Usman K, Ahmed B, Rizwan M, Saleem MH, Al Jabri H. Understanding the phytoremediation mechanisms of potentially toxic elements: a proteomic overview of recent advances. Front Plant Sci. 2022;13. doi:10.3389/fpls.2022.881242.
  • Yadav R, Singh S, Kumar A, Singh AN. Phytoremediation: a wonderful cost-effective tool. In: Kathi S, Devipriya S, Thamaraiselvi K, editors. Cost effective technologies for solid waste and wastewater treatment. Elsevier; 2022. p. 179–208. doi:10.1016/B978-0-12-822933-0.00008-5.
  • Islam M, Akter R, Rahman M, Kurasaki M. Phytoremediation: background, principle, and application, plant species used for phytoremediation. In: Tanaka S, Kurasaki M, Morikawa M, Kamiya Y, editors. Design of Materials and Technologies for Environmental Remediation. Springer, Singapore: The Handbook of Environmental Chemistry; 2022. p. 199–224. doi:10.1007/698_2021_831.
  • Kikis C, Thalassinos G, Antoniadis V. Soil phytomining: recent developments—a review. Soil Syst. 2024;8(1):8. doi:10.3390/soilsystems8010008.
  • Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng. 2011;2011:1–31. doi:10.1155/2011/939161.
  • Sinha R, Singh AK, Bauddh K, Sharma TR, Sharma P. Phytomining: a sustainable approach for recovery and extraction of valuable metals. In: Bauddh K, Korstad J, Sharma P, editors. Phytorestoration of abandoned mining and oil drilling sites. Elsevier; 2021. p. 487–506. doi:10.1016/B978-0-12-821200-4.00013-3.
  • Nedjimi B. Phytoremediation: a sustainable environmental technology for heavy metals decontamination. SN Appl Sci. 2021;3(3):286. doi:10.1007/s42452-021-04301-4.
  • Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z. Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci. 2020;11:11. doi:10.3389/fpls.2020.00359.