452
Views
0
CrossRef citations to date
0
Altmetric
Review

Views and perspectives on the indoleamines serotonin and melatonin in plants: past, present and future

ORCID Icon
Article: 2366545 | Received 21 Mar 2024, Accepted 05 Jun 2024, Published online: 20 Jun 2024

References

  • Murch SJ, Erland LAE. A systematic review of melatonin in plants: An example of evolution of literature. Front Plant Sci. 2021;12:683047. doi:10.3389/fpls.2021.683047.
  • Yang L, You J, Li J, Wang Y, Chan Z, Sunkar R. Melatonin promotes Arabidopsis primary root growth in an IAA-dependent manner. J Exp Bot. 2021;72(15):5599–18. doi:10.1093/jxb/erab196.
  • Kim M, Seo H, Park C, Park WJ. Examination of the auxin hypothesis of phytomelatonin action in classical auxin assay systems in maize. J Plant Physiol. 2016;190:67–71. doi:10.1016/j.jplph.2015.11.009.
  • Erland LAE, Murch SJ, Reiter RJ, Saxena PK. A new balancing act: The many roles of melatonin and serotonin in plant growth and development. Plant Signal Behav. 2015;10(11):e1096469–15. doi:10.1080/15592324.2015.1096469.
  • Arora D, Singh N, Bhatla SC. Calmodulin and calcium-mediated melatonin signaling mechanisms in plants. Theor Exp Plant Physiol. 2023; 1–11. doi:10.1007/s40626-023-00301-4.
  • Arnao MB, Hernández‐Ruiz J, Hu Y. Melatonin as a regulatory hub of plant hormone levels and action in stress situations. Plant Biol. 2020;23(S1). doi:10.1111/plb.13202.
  • Arnao MB, Hernández-Ruiz J. Melatonin: A new plant hormone and/or a plant master regulator? Trend Plant Sci. 2019;24(1):38–48. doi:10.1016/j.tplants.2018.10.010.
  • Erland LAE, Shukla MR, Singh AS, Murch SJ, Saxena PK. Melatonin and serotonin: Mediators in the symphony of plant morphogenesis. J Pineal Res. 2018;64(2):e12452. doi:10.1111/jpi.12452.
  • Kang S, Kang K, Lee K, Back K. Characterization of rice tryptophan decarboxylases and their direct involvement in serotonin biosynthesis in transgenic rice. Planta. 2007;227(1):263–272. doi:10.1007/s00425-007-0614-z.
  • Berlin J, Rügenhagen C, Dietze P, Fecker LF, Goddijn OJM, Hoge JHC. Increased production of serotonin by suspension and root cultures of Peganum harmala transformed with a tryptophan decarboxylase cDNA clone from Catharanthus roseus. Transgenic Res. 1993;2(6):336–344. doi:10.1007/BF01976175.
  • Kang S, Kang K, Lee K, Back K. Characterization of tryptamine 5-hydroxylase and serotonin synthesis in rice plants. Plant Cell Rep. 2007;26(11):2009–2015. doi:10.1007/s00299-007-0405-9.
  • Songstad DD, Luca VD, Brisson N, Kurz WGW, Nessler CL. High levels of tryptamine accumulation in transgenic tobacco expressing tryptophan decarboxylase. Plant Physiol. 2008;94(3):1410–1413. doi:10.1104/pp.94.3.1410.
  • Songstad DD, Kurz WGW, Nessler CL. Tyramine accumulation in Nicotiana tabacum transformed with a chimeric tryptophan decarboxylase gene. Phytochemistry. 1991;30(10):3245–3246. doi:10.1016/0031-9422(91)83185-N.
  • Tan D-X, Hardeland R, Back K, Manchester LC, Alatorre-Jimenez MA, Reiter RJ. On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine: comparisons across species. J Pineal Res. 2016;61(1):27–40. doi:10.1111/jpi.12336.
  • Reynolds JD, Kimbrough TD, Weekley LB. Evidence for enzymatic 5-hydroxylation of indole-3-acetic acid in vitro by extracts of Sedum morganianum. Zeitschrift Für Pflanzenphysiologie. 1983;112(5):465–470. doi:10.1016/S0044-328X(83)80153-6.
  • Park S, Byeon Y, Lee HY, Kim Y-S, Ahn T, Back K. Cloning and characterization of a serotonin N-acetyltransferase from a gymnosperm, loblolly pine (Pinus taeda). J Pineal Res. 2014;57(3):348–355. doi:10.1111/jpi.12174.
  • Park S, Byeon Y, Back K. Functional analyses of three ASMT gene family members in rice plants. J Pineal Res. 2013;55(4):409–415. doi:10.1111/jpi.12088.
  • Byeon Y, Lee HY, Lee K, Back K. Caffeic acid O-methyltransferaseis involved in the synthesis of melatonin by methylating N-acetylserotonin in Arabidopsis. J Pineal Res. 2014;57(2):219–227. doi:10.1111/jpi.12160.
  • Back K, Tan D-X, Reiter RJ. Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. J Pineal Res. 2016;61(4):426–437. doi:10.1111/jpi.12364.
  • Byeon Y, Lee K, Park Y-I, Park S, Back K. Molecular cloning and functional analysis of serotonin N -acetyltransferase from the cyanobacterium Synechocystis sp. PCC 6803. J Pineal Res. 2013;55(4):371–376. doi:10.1111/jpi.12080.
  • Lee HY, Byeon Y, Lee K, Lee H-J, Back K. Cloning of Arabidopsis serotonin N-acetyltransferase and its role with caffeic acid O-methyltransferase in the biosynthesis of melatonin in vitro despite their different subcellular localizations. J Pineal Res. 2014;57(4):418–426. doi:10.1111/jpi.12181.
  • Dubbels R, Reiter RJ, Klenke E, Goebel A, Schnakenberg E, Ehlers C, Schiwara HW, Schloot W. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J Pineal Res. 1995;18(1):28–31. doi:10.1111/j.1600-079X.1995.tb00136.x.
  • Hattori A, Migitaka H, Iigo M, Itoh M, Yamamoto K, Ohtani-Kaneko R, Hara M, Suzuki T, Reiter RJ. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem Mol Biol Int. 1995;35:627–634.
  • Murch SJ, Simmons CB, Saxena PK. Melatonin in feverfew and other medicinal plants. Lancet. 1997;350(9091):1598–1599. doi:10.1016/S0140-6736(05)64014-7.
  • Erland LAE, Chattopadhyay A, Jones AMP, Saxena PK. Melatonin in Plants and Plant Culture Systems: Variability, stability and efficient quantification. Front Plant Sci. 2016;7:1721. doi:10.3389/fpls.2016.01721.
  • Went FW, Thimann KP. Phytohormones 1937.
  • Zhang C, Žukauskaitė A, Petřík I, Pěnčík A, Hönig M, Grúz J, Široká J, Novák O, Doležal K. In situ characterisation of phytohormones from wounded Arabidopsis leaves using desorption electrospray ionisation mass spectrometry imaging. Analyst (Lond). 2021;146(8):2653–2663. doi:10.1039/D0AN02118K.
  • Erland LAE, Turi CE, Murch SJ. Preliminary assessment of the conservation status of medicinal plant species in Canada1. Botany. 2021;99:1–14.
  • Erland LAE, Yasunaga A, Li ITS, Susan JM, Saxena PK. Direct visualization of location and uptake of applied melatonin and serotonin in living tissues and their redistribution in plants in response to thermal stress. J Pineal Res. 2019;66(1):e12527. doi:10.1111/jpi.12527.
  • Mukherjee S, David A, Yadav S, Frantisek B, Bhatla SC. Salt stress-induced seedling growth inhibition coincides with differential distribution of serotonin and melatonin in sunflower seedling roots and cotyledons. Physiol Plantarum. 2014;152(4):714–728. doi:10.1111/ppl.12218.
  • Chattopadhyay A, Erland LAE, Jones AMP, Saxena PK. Indoleamines and phenylpropanoids modify development in the bryophyte Plagiomnium cuspidatum (Hedw.) T.J. Kop. Vitro Cell Dev Biol - Plant. 2018;54(4):454–464. doi:10.1007/s11627-018-9904-3.
  • Liang S, Xu S, Qu D, Yang L, Wang J, Liu H, Xin W, Zou D, Zheng H. Identification and Functional analysis of the caffeic acid O-Methyltransferase (COMT) gene family in rice (Oryza sativa L.). Int J Mol Sci. 2022;23(15):8491. doi:10.3390/ijms23158491.
  • Byeon Y, Lee H-J, Lee HY, Back K. Cloning and functional characterization of the Arabidopsis N-acetylserotonin O-methyltransferase responsible for melatonin synthesis. J Pineal Res. 2016;60(1):65–73. doi:10.1111/jpi.12289.
  • Zhao D, Yao Z, Zhang J, Zhang R, Mou Z, Zhang X, Li Z, Feng X, Chen S, Reiter RJ. Melatonin synthesis genes N -acetylserotonin methyltransferases evolved into caffeic acid O -methyltransferases and both assisted in plant terrestrialization. J Pineal Res. 2021;71(3):e12737. doi:10.1111/jpi.12737.
  • Erland LAE, Dumigan CR, Forsyth JA, Frolova L, Yasunaga AB, Pun W, Li ITS, Deyholos MK, Murch SJ. Mammalian melatonin agonist pharmaceuticals stimulate rhomboid proteins in plants. Biomolecules. 2022;12(7):882. doi:10.3390/biom12070882.
  • Murch SJ, Campbell SSB, Saxena PK. The role of serotonin and melatonin in plant morphogenesis: Regulation of auxin-induced root organogenesis in in vitro-cultured explants of st. John’s Wort (Hypericum perforatum L.). Vitro Cell Dev Biol - Plant. 2001;37:786–793. doi:10.1007/s11627-001-0130-y.
  • Reiter RJ, Tan D-X, Galano A. Melatonin reduces lipid peroxidation and membrane viscosity. Front Physiol. 2014;5:377. doi:10.3389/fphys.2014.00377.
  • Raghuram N, Sopory SK. Evidence for some common signal-transduction events for opposite regulation of nitrate reductase and phytochrome-I gene-expression by light. Plant Mol Biol. 1995;29(1):25–35. doi:10.1007/BF00019116.
  • Raghuram N, Sopory S. Roles of nitrate, nitrite and ammonium ion in phytochrome regulation of nitrate reductase gene expression in maize. IUBMB Life. 1999;47(2):239–249. doi:10.1080/15216549900201253.
  • Das R, Sopory SK. Evidence of regulation of calcium uptake by phytochrome in maize protoplasts. Biochem Biophys Res Commun. 1985;128(3):1455–1460. doi:10.1016/0006-291X(85)91103-9.
  • Chandok MR, Sopory SK. 5-Hydroxytryptamine affects turnover of polyphosphoinositides in maize and stimulates nitrate reductase in the absence of light. FEBS Lett. 1994;356(1):39–42. doi:10.1016/0014-5793(94)01213-X.
  • Arnao MB, Hernández-Ruiz J, Cano A, Reiter RJ. Melatonin and Carbohydrate Metabolism in Plant Cells. Plants. 2021;10(9):1917. doi:10.3390/plants10091917.
  • Zhao H, Su T, Huo L, Wei H, Yang J, Xu L, Ma F. Unveiling the mechanism of melatonin impacts on maize seedling growth: Sugar metabolism as a case. J Pineal Res. 2015;59(2):255–266. doi:10.1111/jpi.12258.
  • Hanson J, Smeekens S. Sugar perception and signaling—an update. Curr Opin Plant Biol. 2009;12(5):562–567. doi:10.1016/j.pbi.2009.07.014.
  • Zhao Y, Tan D-X, Lei Q, Chen H, Wang L, Li Q, Gao Y, Kong J. Melatonin and its potential biological functions in the fruits of sweet cherry. J Pineal Res. 2013;55(1):79–88. doi:10.1111/jpi.12044.
  • Ahn H-R, Kim Y-J, Lim Y-J, Duan S, Eom S-H, Jung K-H. Key genes in the melatonin biosynthesis pathway with circadian rhythm are associated with various abiotic stresses. Plants. 2021;10(1):129. doi:10.3390/plants10010129.
  • Zhang H, Wang L, Shi K, Shan D, Yunpeng Z, Wang C, Bai Y, Yan T, Xiaodong Z, Kong J. Apple tree flowering is mediated by low level of melatonin under the regulation of seasonal light signal. J Pineal Res. 2019;66(2):66. doi:10.1111/jpi.12551.
  • Kimbrough TD, Reynolds JD, Humphreys KJ, Weekley LB. Diurnal changes in tissue leaf levels of tryptophan, tyrosine and amine metabolites in sedum morganianum and sedum pachyphyllum. Biochem Physiol Pfl. 1987;182(1):67–72. doi:10.1016/S0015-3796(87)80039-2.
  • Reynolds JD, Kimbrough TD, Weekley LB. The effect of light quality on 5-hydroxyindole metabolism in leaves of Sedum morganianum (Crassulaceae). Biochem Physiol Pflanzen. 1985;189(5):345–351. doi:10.1016/S0015-3796(85)80085-8.
  • Lee HY, Back K. Melatonin plays a pivotal role in conferring tolerance against endoplasmic reticulum stress via mitogen-activated protein kinases and bZIP60 in Arabidopsis thaliana. Melatonin Res. 2018;1(1):94–108. doi:10.32794/mr11250006.
  • Xu L, Xiang G, Sun Q, Ni Y, Jin Z, Gao S, Yao Y. Melatonin enhances salt tolerance by promoting MYB108A-mediated ethylene biosynthesis in grapevines. Hortic Res. 2019;6(1):114. doi:10.1038/s41438-019-0197-4.
  • Lee HY, Back K. Mitogen-activated protein kinase pathways are required for melatonin-mediated defense responses in plants. J Pineal Res. 2016;60(3):327–335. doi:10.1111/jpi.12314.
  • Lee HY, Back K. Melatonin is required for H2O2- and NO-mediated defense signaling through MAPKKK3 and OXI1 in Arabidopsis thaliana. J Pineal Res. 2017;62(2):62. doi:10.1111/jpi.12379.
  • Yao J, Ma Z, Ma Y, Zhu Y, Lei M, Hao C, Chen L, Xu Z, Huang X. Role of melatonin in UV‐B signaling pathway and UV‐B stress resistance in Arabidopsis thaliana. Plant, Cell & Environ. 2021;44(1):114–129. doi:10.1111/pce.13879.
  • Shi H, Qian Y, Tan D-X, Reiter RJ, He C. Melatonin induces the transcripts of CBF/DREB1s and their involvement in both abiotic and biotic stresses in Arabidopsis. J Pineal Res. 2015;59(3):334–342. doi:10.1111/jpi.12262.
  • Bajwa VS, Shukla MR, Sherif SM, Murch SJ, Saxena PK. Role of melatonin in alleviating cold stress in Arabidopsis thaliana. J Pineal Res. 2014;56(3):238–245. doi:10.1111/jpi.12115.
  • Wang D, Chen Q, Chen W, Guo Q, Xia Y, Wang S, Jing D, Liang G. Physiological and transcription analyses reveal the regulatory mechanism of melatonin in inducing drought resistance in loquat (Eriobotrya japonica Lindl.) seedlings. Environ Exp Bot. 2021;181:104291. doi:10.1016/j.envexpbot.2020.104291.
  • Li G, Liu J, Chen S, Wang P, Liu H, Dong J, Zheng Y, Xie Y, Wang C, Guo T. et al. Melatonin promotes potassium deficiency tolerance by regulating HAK1 transporter and its upstream transcription factor NAC71 in wheat. J Pineal Res. 2021;70(4):e12727. doi:10.1111/jpi.12727.
  • Zhang T, Tang Y, Luan Y, Cheng Z, Wang X, Tao J, Zhao D. Herbaceous peony AP2/ERF transcription factor binds the promoter of the tryptophan decarboxylase gene to enhance high‐temperature stress tolerance. Plant, Cell & Environ. 2022;45(9):2729–2743. doi:10.1111/pce.14357.
  • Ullah I, A P, Abbas A, Hussain S, Nanda S, a P. Genome-wide identification and expression analysis of the RcYABBY s reveals their potential functions in rose (Rosa chinensis Jacq.). J Hortic Sci Biotechnol. 2022;97(5):593–602. doi:10.1080/14620316.2022.2048207.
  • Back K. Melatonin metabolism, signaling, and possible roles in plants. Plant Journal. 2020;105(2):376–391. doi:10.1111/tpj.14915.
  • Abdul Rafiu A, Sovacool BK, Daniels C. The dynamics of global public research funding on climate change, energy, transport, and industrial decarbonisation. Renew Sustain Energy Rev. 2022;162:112420. doi:10.1016/j.rser.2022.112420.
  • Anderson R, Bayer PE, Edwards D. Climate change and the need for agricultural adaptation. Curr Opin Plant Biol. 2020;56:197–202. doi:10.1016/j.pbi.2019.12.006.
  • Brummitt NA, Bachman SP, Griffiths-Lee J, Lutz M, Moat JF, Farjon A, Donaldson JS, Hilton-Taylor C, Meagher TR, Albuquerque S. et al. Green plants in the red: A baseline global assessment for the IUCN sampled red list index for plants. PLOS ONE. 2015;10(8):e0135152. doi:10.1371/journal.pone.0135152.
  • Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM. Beyond Predictions: Biodiversity conservation in a changing climate. Science. 2011;332(6025):53–58. doi:10.1126/science.1200303.
  • Foden WB, Butchart SHM, Stuart SN, Vié J-C, Akçakaya HR, Angulo A, DeVantier LM, Gutsche A, Turak E, Cao L. et al. Identifying the World’s Most Climate Change Vulnerable Species: A systematic trait-based assessment of all birds, amphibians and corals. PLOS ONE. 2013;8(6):e65427–13. doi:10.1371/journal.pone.0065427.
  • Darwin C. In: Darwin F, John Murray, editors. The ’Power of movement in plants.’–1880. London, UK: John Murray; 1888. p. 329–338.
  • Valles-Colomer M, Falony G, Darzi Y, Tigchelaar EF, Wang J, Tito RY, Schiweck C, Kurilshikov A, Joossens M, Wijmenga C. et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol. 2019;4(4):623–632. doi:10.1038/s41564-018-0337-x.
  • Saremba BM, Tymm FJM, Baethke K, Rheault MR, Sherif SM, Saxena PK, Murch SJ. Plant signals during beetle (Scolytus multistriatus) feeding in American elm (Ulmus americana Planch). Plant Signal Behav. 2017;12(5):e1296997. doi:10.1080/15592324.2017.1296997.
  • Barrett M, Orchard I. Serotonin-induced elevation of cAMP levels in the epidermis of the blood-sucking bug, Rhodnius prolixus. J Insect Physiol. 1990;36(9):625–633. doi:10.1016/0022-1910(90)90066-O.
  • Oyarzabal-Armendariz E, Alquicira-Mireles J, Zúñiga-Ruíz B, Arreola-Ramírez JL, Guevara-Fefer P, Lara-Figueroa CO, Escamilla-Chimal EG. Effect of Azadirachta indica. In: Juss A. Eds. (Meliaceae) on the serotonin rhythm of Spodoptera frugiperda. Vol. 38. Lepidoptera: Noctuidae). Chronobiol Int; 2021. p. 201–211.
  • O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res. 2015;277:32–48. doi:10.1016/j.bbr.2014.07.027.
  • Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK, Hsiao EY. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161(2):264–276. doi:10.1016/j.cell.2015.02.047.
  • Baluška F, Mancuso S, Volkman D, Barlow PW. The ‘root-brain’ hypothesis of Charles and Francis Darwin. Plant Signal Behav. 2009;4(12):1121–1127. doi:10.4161/psb.4.12.10574.
  • Tonello L, Gashi B, Scuotto A, Cappello G, Cocchi M, Gabrielli F, Tuszynski JA. The gastrointestinal-brain axis in humans as an evolutionary advance of the root-leaf axis in plants: A hypothesis linking quantum effects of light on serotonin and auxin. J Integr Neurosci. 2018;17(2):227–237. doi:10.3233/JIN-170048.
  • Pascale A, Proietti S, Pantelides IS, Stringlis IA. Modulation of the Root Microbiome by Plant Molecules: The basis for targeted disease suppression and plant growth promotion. Front Plant Sci. 2020;10:1741. doi:10.3389/fpls.2019.01741.
  • Ma Y, Jiao J, Fan X, Sun H, Ying Z, Jiang J, Liu C. Endophytic bacterium Pseudomonas fluorescens RG11 may transform tryptophan to melatonin and promote endogenous melatonin levels in the roots of four grape cultivars. Front Plant Sci. 2017;7. doi:10.3389/fpls.2016.02068.
  • Whiteside MD, Garcia MO, Treseder KK, Bonaventure G. Amino acid uptake in arbuscular mycorrhizal plants. PLOS ONE. 2012;7(10):e47643. doi:10.1371/journal.pone.0047643.
  • Jiao J, Ma Y, Chen S, Liu C, Yuyang S, Qin Y, Yuan C, Liu Y. Melatonin-producing endophytic bacteria from grapevine roots promote the abiotic stress-induced production of endogenous melatonin in their hosts. Front Plant Sci. 2016;7. doi:10.3389/fpls.2016.01387.
  • Zhang X, Zhang H, Zhang H, Tang M. Exogenous melatonin application enhances Rhizophagus irregularis symbiosis and induces the antioxidant response of Medicago truncatula under lead stress. Front Microbiol. 2020;11:516. doi:10.3389/fmicb.2020.00516.
  • Riga P, Benedicto L, García-Flores L, Villaño D, Medina S, Á G-I. Rootstock effect on serotonin and nutritional quality of tomatoes produced under low temperature and light conditions. J Food Comp Anal. 2016;46:50–59. doi:10.1016/j.jfca.2015.11.003.
  • Bik EM, Ugalde JA, Cousins J, Goddard AD, Richman J, Apte ZS. Microbial biotransformations in the human distal gut: Microbial biotransformations in the distal gut. Br J Pharmacol Chemother. 2017;175(24):4404–4414. doi:10.1111/bph.14085.
  • Erland L, Turi CE, Saxena PK, Murch SJ. Metabolomics and hormonomics to crack the code of filbert growth. Metabolomics. 2020;16(5):62. doi:10.1007/s11306-020-01684-0.
  • Israelyan N, Margolis KG. Reprint of: Serotonin as a link between the gut-brain-microbiome axis in autism spectrum disorders. Pharmacol Res. 2019;140:115–120. doi:10.1016/j.phrs.2018.12.023.
  • Iriti M, Varoni EM. Melatonin in Mediterranean diet, a new perspective. J Sci Food Agricult. 2015;95(12):2355–2359. doi:10.1002/jsfa.7051.
  • Wei J, D-X L, Zhang J-R, Shan C, Zed R, Song Z-B, Chen Q. Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana. J Pineal Res. 2018: 65.
  • Li D, Wei J, Peng Z, Ma W, Yang Q, Song Z, Sun W, Yang W, Yuan L, Xu X. et al. Daily rhythms of phytomelatonin signaling modulate diurnal stomatal closure via regulating reactive oxygen species dynamics in Arabidopsis. J Pineal Res. 2020;68(3):e12640. doi:10.1111/jpi.12640.
  • Lee HY, Back K. The phytomelatonin receptor (PMRT1) Arabidopsis Cand2 is not a bona fide G protein–coupled melatonin receptor. Melatonin Res. 2020;3(2):177–186. doi:10.32794/mr11250055.
  • Wang L-F, Lu K-K, Li T-T, Zhang Y, Guo J-X, Song R-F, Liu W-C. Maize PHYTOMELATONIN RECEPTOR1 functions in plant tolerance to osmotic and drought stress. J Exp Bot. 2021.
  • Bai Y, Wei Y, Yin H, Hu W, Cheng X, Guo J, Dong Y, Zheng L, Xie H, Zeng H. et al. PP2C1 fine‐tunes melatonin biosynthesis and phytomelatonin receptor PMTR1 binding to melatonin in cassava. J Pineal Res. 2022;73(1):e12804. doi:10.1111/jpi.12804.
  • Li X, Rengel Z, Chen Q. Phytomelatonin prevents bacterial invasion during nighttime. Trends Plant Sci. 2022;27(4):331–334. doi:10.1016/j.tplants.2021.12.008.
  • Wang Z, Li L, Khan D, Chen Y, Pu X, Wang X, Guan M, Rengel Z, Chen Q. Nitric oxide acts downstream of reactive oxygen species in phytomelatonin receptor 1 (PMTR1)-mediated stomatal closure in Arabidopsis. J Plant Physiol. 2023;282:153917. doi:10.1016/j.jplph.2023.153917.
  • Ramakrishna A, Giridhar P, Jobin M, Paulose CS, Ravishankar GA. Indoleamines and calcium enhance somatic embryogenesis in Coffea canephora P ex Fr. Plant Cell Tissue Organ Cult. 2011;108(2):267–278. doi:10.1007/s11240-011-0039-z.
  • Wan J, Zhang P, Sun L, Li S, Wang R, Zhou H, Wang W, Xu J. Involvement of reactive oxygen species and auxin in serotonin-induced inhibition of primary root elongation. J Plant Physiol. 2018;229:89–99. doi:10.1016/j.jplph.2018.07.004.
  • Roshchina VV., Roshchina VV. Chemical signaling in plant microspore cells. Biol Bull Russ Acad Sci. 2006;33(4):332–338. doi:10.1134/S1062359006040030.
  • Roshchina VV. Molecular-cellular mechanisms in pollen allelopathy. 2001.
  • Roshchina VV. Contractile proteins in chemical signal transduction in plant microspores. Biol Bull Russ Acad Sci. 2005;32(3):229–233. doi:10.1007/s10525-005-0093-3.
  • Jenkins GI. Signal Transduction in Responses to UV-B Radiation. Annu Rev Plant Biol. 2009;60(1):407–431. doi:10.1146/annurev.arplant.59.032607.092953.
  • Azmitia EC. Chapter 1 Evolution of serotonin: sunlight to suicide. Handb Behav Neurosci. 2020;31:3–22.
  • Forsyth JA, Erland LA, Shipley PR, Murch SJ. Plant perception of light: The role of indoleamines in scutellaria species. Melatonin Res. 2020;3(2):161–176. doi:10.32794/mr11250054.
  • Yeleswaram K, Lg M, Knipe JO, Schabdach D. Pharmacokinetics and oral bioavailability of exogenous melatonin in preclinical animal models and clinical implications. J Pineal Res. 1997;22(1):45–51. doi:10.1111/j.1600-079X.1997.tb00302.x.
  • Rebollo-Hernanz M, Aguilera Y, Herrera T, Cayuelas LT, DueñDueñAs M, Rodríguez-Rodríguez P, Ramiro-Cortijo D, Arribas SM, Martín-Cabrejas MA. Bioavailability of melatonin from lentil sprouts and its role in the plasmatic antioxidant status in rats. Foods. 2020;9(3):330. doi:10.3390/foods9030330.
  • Madigan AP, Egidi E, Bedon F, Franks AE, Plummer KM. Bacterial and fungal communities are differentially modified by melatonin in agricultural soils under abiotic stress. Front Microbiol. 2019;10:2616. doi:10.3389/fmicb.2019.02616.
  • Arnao MB, Hernández-Ruiz J. Melatonin as a chemical substance or as phytomelatonin rich-extracts for use as plant protector and/or biostimulant in accordance with EC legislation. Agronomy. 2019;9(10):570–27. doi:10.3390/agronomy9100570.
  • Arnao MB, Hernández‐Ruiz J. Melatonin as a plant biostimulant in crops and during post‐harvest: a new approach is needed. J Sci Food Agric. 2021;101(13):5297–5304. doi:10.1002/jsfa.11318.
  • Bhatla SC, Ranjan P, Singh N, Gogna M. Pure biochemicals and nanomaterials as next generation biostimulants for sustainable agriculture under abiotic stress – recent advances and future scope. Plant Signal Behav. 2023;18(1):2290336. doi:10.1080/15592324.2023.2290336.
  • Mukherjee S, Roy S, Arnao MB. Nanovehicles for melatonin: a new journey for agriculture. Trends Plant Sci. 2024;29(2):232–248. doi:10.1016/j.tplants.2023.11.016.
  • Song Y, Wang B, Qiu D, Xie Z, Dai S, Li C, Xu S, Zheng Y, Li S, Jiang M. Melatonin enhances metallic oxide nanoparticle stress tolerance in rice via inducing tetrapyrrole biosynthesis and amino acid metabolism. Environ Sci Nano. 2021;8(8):2310–2323. doi:10.1039/D1EN00244A.
  • Andersen LPH, Gögenur I, Rosenberg J, Reiter RJ. The safety of melatonin in humans. Clin Drug Investig. 2016;36(3):169–175. doi:10.1007/s40261-015-0368-5.
  • Jan S, Singh B, Bhardwaj R, Kapoor D, Kour J, Singh R, Alam P, Noureldeen A, Darwish H. Application of melatonin and PGPR alleviates thiamethoxam induced toxicity by regulating the TCA cycle in Brassica Juncea L. Saudi J Biol Sci. 2022;29(3):1348–1354. doi:10.1016/j.sjbs.2022.01.039.
  • Johns NP, Johns J, Supatra P, Plaimee P, Sae-Teaw M. Dietary intake of melatonin from tropical fruit altered urinary excretion of 6-sulfatoxymelatonin in healthy volunteers. J Agr Food Chem. 2013;61(4):913–919. doi:10.1021/jf300359a.
  • Pranil T, Moongngarm A, Manwiwattanakul G, Loypimai P, Kerr WL. Melatonin and its derivative contents in tropical fruits and fruit tablets. J Food Compos Anal. 2021;103:104109. doi:10.1016/j.jfca.2021.104109.
  • Mhlongo MI, Piater LA, Steenkamp PA, Labuschagne N, Dubery IA. Metabolomic evaluation of tissue-specific defense responses in tomato plants modulated by PGPR-priming against Phytophthora capsici infection. Plants. 2021;10(8):1530. doi:10.3390/plants10081530.
  • Shen J, Chen D, Zhang X, Song L, Dong J, Xu Q, Hu M, Cheng Y, Shen F, Wang W. Mitigation of salt stress response in upland cotton (Gossypium hirsutum) by exogenous melatonin. J Plant Res. 2021;134(4):857–871. doi:10.1007/s10265-021-01284-6.
  • Giebelhaus RT, Biggs L, Murch SJ, Erland LAE. Untargeted and targeted metabolomics to understand plant growth regulation and evolution in wollemi pine (wollemia nobilis). Botany. 2023;101(9):377–380. doi:10.1139/cjb-2023-0017.
  • Uğur Y. Extraction and quantification of melatonin in cornelian cherry (Cornus mas L.) by ultra-fast liquid chromatography coupled to fluorescence detector (UFLC-FD). Acta Chromatogr. 2023;35(3):219–226. doi:10.1556/1326.2022.01052.
  • Esen E, Osman B, Demir MN. Molecularly imprinted solid-phase extractıon sorbent for selective determınatıon of melatonin. Microchem J. 2021;170:106666. doi:10.1016/j.microc.2021.106666.
  • Dou J, Wang J, Tang Z, Yu J, Wu Y, Liu Z, Wang J, Wang G, Tian Q. Application of exogenous melatonin improves tomato fruit quality by promoting the accumulation of primary and secondary metabolites. Foods. 2022;11(24):4097. doi:10.3390/foods11244097.
  • Vafadar F, Ehsanzadeh P. Synergistic effects of calcium and melatonin on physiological and phytochemical attributes of Dracocephalum kotschyi genotypes under salinity stress. Physiol Plant. 2023;175(3):e13912. doi:10.1111/ppl.13912.
  • Guevara L, MÁ D-A, Ortigosa A, González-Gordo S, Díaz C, Vicente F, Corpas FJ, Del PJ, Palma JM. Identification of compounds with potential therapeutic uses from sweet pepper (Capsicum annuum L.) fruits and their modulation by nitric oxide (NO). Int J Mol Sci. 2021;22(9):4476. doi:10.3390/ijms22094476.
  • Tereucán G, Ruiz A, Nahuelcura J, Oyarzún P, Santander C, Winterhalter P, Ferreira PAA, Cornejo P. Shifts in biochemical and physiological responses by the inoculation of arbuscular mycorrhizal fungi in Triticum aestivum growing under drought conditions. J Sci Food Agric. 2022;102(5):1927–1938. doi:10.1002/jsfa.11530.
  • Qin B, Zou J, Cao L, Wang M, Zhang Y-X. Melatonin regulates material transport to reduce carbon emissions and increase yield under different nitrogen in rice. Agric Ecosyst Environ. 2023;342:108235. doi:10.1016/j.agee.2022.108235.
  • Gupta P, De B. Influence of calcium channel modulators on the production of serotonin, gentisic acid, and a few other biosynthetically related phenolic metabolites in seedling leaves of salt tolerant rice variety Nonabokra. Plant Signal Behav. 2021;16(10):1929732. doi:10.1080/15592324.2021.1929732.
  • Yadav S, Elansary HO, Mattar MA, Elhindi KM, Alotaibi MA, Mishra A. Differential accumulation of metabolites in Suaeda species provides new insights into abiotic stress tolerance in C4-halophytic species in elevated CO2 conditions. Agronomy. 2021;11(1):131. doi:10.3390/agronomy11010131.
  • Pesti-Asbóth G, Molnár-Bíróné P, Forgács I, Remenyik J, Dobránszki J. Ultrasonication affects the melatonin and auxin levels and the antioxidant system in potato in vitro. Front Plant Sci. 2022;13:979141. doi:10.3389/fpls.2022.979141.
  • Arabia A, Munné-Bosch S, Muñoz P. Melatonin triggers tissue-specific changes in anthocyanin and hormonal contents during postharvest decay of Angeleno plums. Plant Sci. 2022;320:111287. doi:10.1016/j.plantsci.2022.111287.
  • Ko J, Ryu JE, Noh S-W, Choi H-K. Melatonin treatment enhances the growth and productivity of useful metabolites in the in vitro culture of spirodela polyrhiza. J Agric Food Chem. 2023;71(3):1748–1757. doi:10.1021/acs.jafc.2c07147.
  • Mukherjee S, Bhatla SC. Endogenous serotonin accumulation coincides with reorganization of auxin efflux protein (PIN1) and actin (ACT8) accompanying primary root growth inhibition in NaCl-stress-induced etiolated sunflower (Helianthus annuus; cv. KBSH 44) seedlings. J Plant Growth Regul. 2023;42(8):5192–5202. doi:10.1007/s00344-023-11046-4.
  • Janceva S, Andersone A, Lauberte L, Bikovens O, Nikolajeva V, Jashina L, Zaharova N, Telysheva G, Senkovs M, Rieksts G. et al. Sea Buckthorn (Hippophae rhamnoides) waste biomass after harvesting as a source of valuable biologically active compounds with nutraceutical and antibacterial potential. Plants. 2022;11(5):642. doi:10.3390/plants11050642.
  • MdZ U, Paul A, Rakib A, Sami SA, Mahmud S, MdS R, Hossain S, Tareq AM, Dutta M, Emran TB. et al. Chemical profiles and pharmacological properties with in silico studies on elatostema papillosum wedd. Molecules. 2021;26(4):809. doi:10.3390/molecules26040809.