303
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Drought-induced molecular changes in crown of various barley phytohormone mutants

, , , , , , , , , & ORCID Icon show all
Article: 2371693 | Received 26 Feb 2024, Accepted 03 Jun 2024, Published online: 26 Jun 2024

References

  • Verma V, Ravindran P, Kumar PP. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016;16(1):86. doi:10.1186/s12870-016-0771-y.
  • Marzec M, Alqudah AM. Key hormonal components regulate agronomically important traits in barley. Int J Mol Sci. 2018;19(3):795. doi:10.3390/ijms19030795.
  • Hedden P. The current status of research on gibberellin biosynthesis. Plant Cell Physiol. 2020;61(11):1832–21. doi:10.1093/pcp/pcaa092.
  • Jia Q, Li C, Shang Y, Zhu J, Hua W, Wang J, Yang J, Zhang G. Molecular characterization and functional analysis of barley semi-dwarf mutant Riso no. 9265. BMC Genomics. 2015;16(1):927. doi:10.1186/s12864-015-2116-x.
  • Li S, Zheng T, Zhuo X, Li Z, Li L, Li P, Qiu L, Pan H, Wang J, Cheng T. et al. Transcriptome profiles reveal that gibberellin-related genes regulate weeping traits in crape myrtle. Hortic Res. 2020;7(1):1–14. doi:10.1038/s41438-020-0279-3.
  • Chandler PM, Harding CA. ‘Overgrowth’ mutants in barley and wheat: new alleles and phenotypes of the ‘Green Revolution’ Della gene. J Exp Bot. 2013;64(6):1603–1613. doi:10.1093/jxb/ert022.
  • Chandler PM, Harding CA, Ashton AR, Mulcair MD, Dixon NE, Mander LN. Characterization of gibberellin receptor mutants of barley (Hordeum vulgare L.). Mol Plant. 2007;1(2):285–294. doi:10.1093/mp/ssn002.
  • Kuczyńska A, Surma M, Adamski T, Mikołajczak K, Krystkowiak K, Ogrodowicz P. Effects of the semi-dwarfing sdw1/denso gene in barley. J Appl Genet. 2013;54:381–390. doi:10.1007/s13353-013-0165-x.
  • Iqbal S, Wang X, Mubeen I, Kamran M, Kanwal I, Díaz GA, Abbas A, Parveen A, Atiq MN, Alshaya H. et al. Phytohormones trigger drought tolerance in crop plants: outlook and future perspectives. Front Plant Sci. 2022;12:3378. doi:10.3389/fpls.2021.799318.
  • Lo S-F, Ho T-HD, Liu Y-L, Jiang M-J, Hsieh K-T, Chen K-T, Yu L-C, Lee M-H, Chen C-Y, Huang T-P. et al. Ectopic expression of specific GA2 oxidase mutants promotes yield and stress tolerance in rice. Plant Biotechnol J. 2017;15(7):850–864. doi:10.1111/pbi.12681.
  • Nir I, Moshelion M, Weiss D. The Arabidopsis GIBBERELLIN METHYL TRANSFERASE 1 suppresses gibberellin activity, reduces whole-plant transpiration and promotes drought tolerance in transgenic tomato. Plant, Cell & Environ. 2014;37:113–123. doi:10.1111/pce.12135.
  • Gruszka D. Crosstalk of the Brassinosteroid signalosome with phytohormonal and stress signaling components maintains a balance between the processes of growth and stress tolerance. Int J Mol Sci. 2018;19(9):2675. doi:10.3390/ijms19092675.
  • Manghwar H, Hussain A, Ali Q, Liu F. Brassinosteroids (BRs) role in plant development and coping with different stresses. Int J Mol Sci. 2022;23(3):1012. doi:10.3390/ijms23031012.
  • Chono M, Honda I, Zeniya H, Yoneyama K, Saisho D, Takeda K, Takatsuto S, Hoshino T, Watanabe Y. A semidwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor. Plant Physiol. 2003;133(3):1209–1219. doi:10.1104/pp.103.026195.
  • Gruszka D, Szarejko I, Maluszynski M. New allele of HvBRI1 gene encoding brassinosteroid receptor in barley. J Appl Genet. 2011;52(3):257–268. doi:10.1007/s13353-011-0031-7.
  • Kour J, Kohli SK, Khanna K, Bakshi P, Sharma P, Singh AD, Ibrahim M, Devi K, Sharma N, Ohri P. et al. Brassinosteroid signaling, crosstalk and, physiological functions in plants under heavy metal stress. Front Plant Sci. 2021;12:204. doi:10.3389/fpls.2021.608061.
  • Otani Y, Kawanishi M, Kamimura M, Sasaki A, Nakamura Y, Nakamura T, Okamoto S. Behavior and possible function of Arabidopsis BES1/BZR1 homolog 2 in brassinosteroid signaling. Plant Signal Behav. 2022;17(1):2084277. doi:10.1080/15592324.2022.2084277.
  • Yaqoob U, Jan N, Raman PV, Siddique KHM, John R. Crosstalk between brassinosteroid signaling, ROS signaling and phenylpropanoid pathway during abiotic stress in plants: does it exist? Plant Stress. 2022;4:100075. doi:10.1016/J.STRESS.2022.100075.
  • Fariduddin Q, Khanam S, Hasan SA, Ali B, Hayat S, Ahmad A. Effect of 28-homobrassinolide on the drought stress-induced changes in photosynthesis and antioxidant system of Brassica juncea L. Acta Physiol Plant. 2009;31(5):889–897. doi:10.1007/s11738-009-0302-7.
  • Northey JGB, Liang S, Jamshed M, Deb S, Foo E, Reid JB, McCourt P, Samuel MA. Farnesylation mediates brassinosteroid biosynthesis to regulate abscisic acid responses. Nat Plants. 2016;2(8):16114. doi:10.1038/nplants.2016.114.
  • Gruszka D, Janeczko A, Puła J, Lepiarczyk A, Pociecha E. Impact of drought exerted during spike development on tillering, yield parameters and grain chemical composition in semi-dwarf barley mutants deficient in the brassinosteroid metabolism. Agronomy. 2020;10(10):1595. doi:10.3390/agronomy10101595.
  • Rasmussen A, Mason MG, De Cuyper C, Brewer PB, Herold S, Agusti J, Geelen D, Greb T, Goormachtig S, Beeckman T. et al. Strigolactones suppress adventitious rooting in Arabidopsis and pea. Plant Physiol. 2012;158(4):1976–1987. doi:10.1104/pp.111.187104.
  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K. et al. Inhibition of shoot branching by new terpenoid plant hormones. Nature. 2008;455(7210):195–200. doi:10.1038/nature07272.
  • Saeed W, Naseem S, Ali Z. Strigolactones biosynthesis and their role in abiotic stress resilience in plants: a critical review. Front Plant Sci. 2017;8:279971. doi:10.3389/fpls.2017.01487.
  • Chevalier F, Nieminen K, Sánchez-Ferrero JC, Rodríguez ML, Chagoyen M, Hardtke CS, Cubas P. Strigolactone promotes degradation of DWARF14, an α/β hydrolase essential for strigolactone signaling in arabidopsis. Plant Cell. 2014;26(3):1134–1150. doi:10.1105/tpc.114.122903.
  • Marzec M, Gruszka D, Tylec P, Szarejko I. Identification and functional analysis of the HvD14 gene involved in strigolactone signaling in Hordeum vulgare. Physiol Plant. 2016;158:341–355. doi:10.1111/ppl.12460.
  • Faizan M, Faraz A, Sami F, Siddiqui H, Yusuf M, Gruszka D, Hayat S. Role of strigolactones: signalling and crosstalk with other phytohormones. Open Life Sci. 2020;15(1):217–228. doi:10.1515/biol-2020-0022.
  • Cardinale F, Korwin Krukowski P, Schubert A, Visentin I. Strigolactones: mediators of osmotic stress responses with a potential for agrochemical manipulation of crop resilience. J Exp Bot. 2018;69(9):2291–2303. doi:10.1093/jxb/erx494.
  • Ha CV, Leyva-González MA, Osakabe Y, Tran UT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi S, Dong NV. et al. Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc Natl Acad Sci USA. 2014;111(2):851–856. doi:10.1073/pnas.1322135111.
  • Marzec M, Daszkowska‐Golec A, Collin A, Melzer M, Eggert K, Szarejko I. Barley strigolactone signalling mutant hvd14.D reveals the role of strigolactones in abscisic acid‐dependent response to drought. Plant, Cell & Environ. 2020;43:2239–2253. doi:10.1111/pce.13815.
  • Vítámvás P, Urban MO, Škodáček Z, Kosová K, Pitelková I, Vítámvás J, Renaut J, Prášil IT. Quantitative analysis of proteome extracted from barley crowns grown under different drought conditions. Front Plant Sci. 2015;6:479. doi:10.3389/fpls.2015.00479.
  • Druka A, Franckowiak J, Lundqvist U, Bonar N, Alexander J, Houston K, Radovic S, Shahinnia F, Vendramin V, Morgante M. et al. Genetic dissection of barley morphology and development. Plant Physiol. 2011;155(2):617–627. doi:10.1104/pp.110.166249.
  • Salvi S, Druka A, Milner SG, Gruszka D. Induced Genetic Variation, TILLING and NGS-Based Cloning. Berlin, Heidelberg: Springer; 2014. p. 287–310. doi:10.1007/978-3-662-44406-1_15.
  • Szurman-Zubrzycka ME, Zbieszczyk J, Marzec M, Jelonek J, Chmielewska B, Kurowska MM, Krok M, Daszkowska-Golec A, Guzy-Wrobelska J, Gruszka D. et al. HorTILLUS—A rich and renewable source of induced mutations for Forward/Reverse genetics and pre-breeding programs in barley (Hordeum vulgare L.). Front Plant Sci. 2018;9:346506. doi:10.3389/fpls.2018.00216.
  • Kuczyńska A, Cardenia V, Ogrodowicz P, Kempa M, Rodriguez-Estrada MT, Mikołajczak K. Effects of multiple abiotic stresses on lipids and sterols profile in barley leaves (Hordeum vulgare L.). Plant Physiol Biochem. 2019;141:215–224. doi:10.1016/j.plaphy.2019.05.033.
  • Samarah NH. Effects of drought stress on growth and yield of barley. Agron Sustain Dev. 2005;25(1):145–149. doi:10.1051/agro:2004064.
  • Meier U, Bleiholder H, Buhr L, Feller C, Hack H, Heß M, Lancashire PD, Schnock U, Stauß R, van den Boom T. et al. The BBCH system to coding the phenological growth stages of plants – history and publications. J Kulturpflanz. 2009;61:41–52.
  • Mikołajczak K, Kuczyńska A, Krajewski P, Sawikowska A, Surma M, Ogrodowicz P, Adamski T, Krystkowiak K, Górny AG, Kempa M. et al. Quantitative trait loci for plant height in Maresi × CamB barley population and their associations with yield-related traits under different water regimes. J Appl Genetics. 2017;58(1):23–35. doi:10.1007/s13353-016-0358-1.
  • Mikołajczak K, Kuczyńska A, Krajewski P, Kempa M, Nuc M. Transcriptome profiling disclosed the effect of single and combined drought and heat stress on reprogramming of genes expression in barley flag leaf. Front Plant Sci. 2023a;13:5439. doi:10.3389/fpls.2022.1096685.
  • Mikołajczak K, Kuczyńska A, Ogrodowicz P, Kiełbowicz-Matuk A, Ćwiek-Kupczyńska H, Daszkowska-Golec A, Szarejko I, Surma M, Krajewski P. High-throughput sequencing data revealed genotype-specific changes evoked by heat stress in crown tissue of barley sdw1 near-isogenic lines. BMC Genomics. 2022;23(1):177. doi:10.1186/s12864-022-08410-1.
  • Hurkman WJ, Tanaka CK. Extraction of wheat endosperm proteins for proteome analysis. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;849(1–2):344–350. doi:10.1016/j.jchromb.2006.11.047.
  • Mikołajczak K, Kuczyńska A, Krajewski P, Kempa M, Witaszak N. Global proteome profiling revealed the adaptive reprogramming of barley flag leaf to drought and elevated temperature. Cells. 2023b; 12:1685. doi:10.3390/cells12131685.
  • Dziurka M, Góraj-Koniarska J, Marasek-Ciolakowska A, Kowalska U, Saniewski M, Ueda J, Miyamoto K. A possible mode of action of methyl jasmonate to induce the secondary abscission zone in stems of bryophyllum calycinum: relevance to plant hormone dynamics. Plants. 2022b;11(3):360. doi:10.3390/plants11030360.
  • Dziurka M, Janeczko A, Juhász C, Gullner G, Oklestková J, Novák O, Saja D, Skoczowski A, Tóbiás I, Barna B. et al. Local and systemic hormonal responses in pepper leaves during compatible and incompatible pepper-tobamovirus interactions. Plant Physiol Biochem. 2016;109:355–364. doi:10.1016/J.PLAPHY.2016.10.013.
  • Cioć M, Dziurka M, Pawłowska B. Changes in endogenous phytohormones of Gerbera jamesonii axillary shoots multiplied under different light emitting diodes light quality. Molecules. 2022;27(6):1804. doi:10.3390/molecules27061804.
  • Dziurka K, Dziurka M, Muszyńska E, Czyczyło-Mysza I, Warchoł M, Juzoń K, Laskoś K, Skrzypek E. Anatomical and hormonal factors determining the development of haploid and zygotic embryos of oat (Avena sativa L.). Sci Rep. 2022a;12(1):548. doi:10.1038/s41598-021-04522-y.
  • Płażek A, Dubert F, Kopeć P, Dziurka M, Kalandyk A, Pastuszak J, Wolko B. Seed hydropriming and smoke water significantly improve low-temperature germination of Lupinus angustifolius L. Int J Mol Sci. 2018;19(4):992. doi:10.3390/ijms19040992.
  • Monat C, Padmarasu S, Lux T, Wicker T, Gundlach H, Himmelbach A, Ens J, Li C, Muehlbauer GJ, Schulman AH. et al. TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome Biol. 2019;20(1):284. doi:10.1186/s13059-019-1899-5.
  • Schubert M, Lindgreen S, Orlando L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res Notes. 2016;9(1):88. doi:10.1186/s13104-016-1900-2.
  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36. doi:10.1186/gb-2013-14-4-r36.
  • Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27(21):2987–2993. doi:10.1093/bioinformatics/btr509.
  • Liao Y, Smyth GK, Shi W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 2019;47(8):e47–e47. doi:10.1093/nar/gkz114.
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi:10.1186/s13059-014-0550-8.
  • Grote S. Gene ontology enrichment using FUNC. R package version 1.18.0; 2022.
  • VSN International. Genstat for Windows 19th Edition. Hemel Hempstead (UK): VSN Int.; 2017.
  • Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf. 2008;9(1):559. doi:10.1186/1471-2105-9-559.
  • Langfelder P, Horvath S. Fast R functions for robust correlations and hierarchical clustering. J Stat Softw. 2012;46(11). doi:10.18637/jss.v046.i11.
  • Shen G, Sun W, Chen Z, Shi L, Hong J, Shi J. Plant GDSL esterases/lipases: evolutionary, physiological and molecular functions in plant development. Plants (Basel, Switz). 2022;11(4):11. doi:10.3390/plants11040468.
  • Sun Z, Li S, Chen W, Zhang J, Zhang L, Sun W, Wang Z. Plant dehydrins: expression, regulatory networks, and protective roles in plants challenged by abiotic stress. Int J Mol Sci. 2021;22(23):12619. doi:10.3390/ijms222312619.
  • Tang F, Gao X, Peng J. The dynamics of carbohydrate and associated gene expression in the stems and roots of upland cotton (Gossypium hirsutum L.) during carbon remobilization. Plant Physiol Biochem. 2022;178:125–136. doi:10.1016/J.PLAPHY.2022.02.022.
  • Wang G, Li H, Gong Y, Yang J, Yi Y, Zhang J, Ye N. Expression profile of the carbon reserve remobilization from the source to sink in rice in response to soil drying during grain filling. Food Energy Secur. 2020;9(3):e204. doi:10.1002/fes3.204.
  • Cheng C, An L, Li F, Ahmad W, Aslam M, Ul Haq MZ, Yan Y, Ahmad RM. Wide-range portrayal of AP2/ERF transcription factor family in maize (Zea mays L.) development and stress responses. Genes (Basel). 2023a;14(1):194. doi:10.3390/genes14010194.
  • Band LR, Nelissen H, Preston SP, Rymen B, Prinsen E, AbdElgawad H, Beemster GTS. Modeling reveals posttranscriptional regulation of GA metabolism enzymes in response to drought and cold. Proc Natl Acad Sci USA. 2022;119(31):e2121288119. doi:10.1073/pnas.2121288119.
  • Wang D, Yang C, Wang H, Wu Z, Jiang J, Liu J, He Z, Chang F, Ma H, Wang X. et al. BKI1 regulates plant architecture through coordinated inhibition of the brassinosteroid and ERECTA signaling pathways in arabidopsis. Mol Plant. 2017;10(2):297–308. doi:10.1016/j.molp.2016.11.014.
  • Dong X, Han B, Yin X, Mao P, Luo D, Zhou Q, Liu Z. Genome-wide identification of the GRAS transcription factor family in autotetraploid cultivated alfalfa (Medicago sativa L.) and expression analysis under drought stress. Ind Crops Prod. 2023;194:116379. doi:10.1016/J.INDCROP.2023.116379.
  • Santner A, Estelle M. The ubiquitin-proteasome system regulates plant hormone signaling. Plant Journal. 2010;61:1029–1040. doi:10.1111/j.1365-313X.2010.04112.x.
  • Kelley DR. E3 ubiquitin ligases: key regulators of hormone signaling in plants. Molecular & Cellular Proteomics: MCP. 2018;17(6):1047–1054. doi:10.1074/mcp.MR117.000476.
  • Nascimento FX, Rossi MJ, Glick BR. Ethylene and 1-Aminocyclopropane-1-carboxylate (ACC) in plant–bacterial interactions. Front Plant Sci. 2018;9:338907. doi:10.3389/fpls.2018.00114.
  • Xiang Y, Lu YH, Song M, Wang Y, Xu W, Wu L, Wang H, Ma Z. Overexpression of a Triticum aestivum Calreticulin gene (TaCRT1) improves salinity tolerance in tobacco. PLOS ONE. 2015;10(10):e0140591. doi:10.1371/journal.pone.0140591.
  • Gomes Ferreira MD, Araújo Castro J, Santana Silva RJ, Micheli F. HVA22 from citrus: a small gene family whose some members are involved in plant response to abiotic stress. Plant Physiol Biochem. 2019;142:395–404. doi:10.1016/J.PLAPHY.2019.08.003.
  • Sun X, Han G, Meng Z, Lin L, Sui N. Roles of malic enzymes in plant development and stress responses. Plant Signal Behav. 2019;14:e1644596. doi:10.1080/15592324.2019.1644596.
  • Diniz AL, da Silva DIR, Lembke CG, Costa MD-BL, Ten-Caten F, Li F, Vilela RD, Menossi M, Ware D, Endres L. et al. Amino acid and carbohydrate metabolism are coordinated to maintain energetic balance during drought in sugarcane. Int J Mol Sci. 2020;21(23):9124. doi:10.3390/ijms21239124.
  • Argueso CT, Ferreira FJ, Epple P, To JPC, Hutchison CE, Schaller GE, Dangl JL, Kieber JJ. Two-component elements mediate interactions between cytokinin and salicylic acid in plant immunity. PLOS Genet. 2012;8(1):e1002448. doi:10.1371/journal.pgen.1002448.
  • Guo F, Ma J, Hou L, Shi S, Sun J, Li G, Zhao C, Xia H, Zhao S, Wang X. et al. Transcriptome profiling provides insights into molecular mechanism in Peanut semi-dwarf mutant. BMC Genomics. 2020;21(1):211. doi:10.1186/s12864-020-6614-0.
  • Sircar S, Parekh N. Meta-analysis of drought-tolerant genotypes in Oryza sativa: a network-based approach. PLOS ONE. 2019;14(5):e0216068. doi:10.1371/journal.pone.0216068.
  • Huang Y-C, Niu C-Y, Yang C-R, Jinn T-L. The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses. Plant Physiol. 2016;172:1182–1199. doi:10.1104/pp.16.00860.
  • Ullah A, Manghwar H, Shaban M, Khan AH, Akbar A, Ali U, Ali E, Fahad S. Phytohormones enhanced drought tolerance in plants: a coping strategy. Environ Sci Pollut Res Int. 2018;25(33):33103–33118. doi:10.1007/s11356-018-3364-5.
  • Cheng C, Yang R, Yin L, Zhang J, Gao L, Lu R, Yang Y, Wang P, Mu X, Zhang S. et al. Characterization of carotenoid cleavage oxygenase genes in cerasus humilis and functional analysis of ChCCD1. Plants. 2023b;12(11):2114. doi:10.3390/plants12112114.
  • Hou Q, Li S, Shang C, Wen Z, Cai X, Hong Y, Qiao G. Genome-wide characterization of chalcone synthase genes in sweet cherry and functional characterization of CpCHS1 under drought stress. Front Plant Sci. 2022;13:989959. doi:10.3389/fpls.2022.989959.
  • Ma Z, Wang J, Li C, Ren P, Yao L, Li B, Meng Y, Ma X, Si E, Yang K. et al. Global profiling of phosphorylation reveals the barley roots response to phosphorus starvation and resupply. Front. Plant Sci. 2021;12:676432. doi:10.3389/fpls.2021.676432.
  • Qamar A, Mysore K, Senthil-Kumar M. Role of proline and pyrroline-5-carboxylate metabolism in plant defense against invading pathogens. Front Plant Sci. 2015;6:144732. doi:10.3389/fpls.2015.00503.
  • Miao Y, Xu L, He X, Zhang L, Shaban M, Zhang X, Zhu L. Suppression of tryptophan synthase activates cotton immunity by triggering cell death via promoting SA synthesis. Plant Journal. 2019;98:329–345. doi:10.1111/tpj.14222.
  • Ciccarelli FD, Bork P. The WHy domain mediates the response to desiccation in plants and bacteria. Bioinformatics. 2005;21(8):1304–1307. doi:10.1093/bioinformatics/bti221.
  • Hao Y, Zong X, Ren P, Qian Y, Fu A. Basic Helix-Loop-Helix (bHLH) transcription factors regulate a wide range of functions in arabidopsis. Int J Mol Sci. 2021;22:7152. doi:10.3390/ijms22137152.
  • Lu R, Zhang J, Liu D, Wei Y-L, Wang Y, Li X-B. Characterization of bHLH/HLH genes that are involved in brassinosteroid (BR) signaling in fiber development of cotton (Gossypium hirsutum). BMC Plant Biol. 2018;18(1):304. doi:10.1186/s12870-018-1523-y.
  • Zhu J-Y, Sae-Seaw J, Wang Z-Y. Brassinosteroid signalling. Development. 2013;140(8):1615–1620. doi:10.1242/dev.060590.
  • Suekawa M, Fujikawa Y, Inada S, Murano A, Esaka M. Gene expression and promoter analysis of a novel tomato aldo-keto reductase in response to environmental stresses. J Plant Physiol. 2016;200:35–44. doi:10.1016/J.JPLPH.2016.05.015.
  • Bartels D, Engelhardt K, Roncarati R, Schneider K, Rotter M, Salamini F. An ABA and GA modulated gene expressed in the barley embryo encodes an aldose reductase related protein. Embo J. 1991;10:1037–1043. doi:10.1002/j.1460-2075.1991.tb08042.x.
  • Éva C, Tóth G, Oszvald M, Tamás L. Overproduction of an Arabidopsis aldo–keto reductase increases barley tolerance to oxidative and cadmium stress by an in vivo reactive aldehyde detoxification. Plant Growth Regul. 2014;74(1):55–63. doi:10.1007/s10725-014-9896-x.
  • Bakshi M, Oelmüller R. WRKY transcription factors. Plant Signal Behav. 2014;9:e27700. doi:10.4161/psb.27700.
  • Jiang J, Ma S, Ye N, Jiang M, Cao J, Zhang J. WRKY transcription factors in plant responses to stresses. J Integr Plant Biol. 2017;59:86–101. doi:10.1111/jipb.12513.
  • Chen L, Xiang S, Chen Y, Li D, Yu D. Arabidopsis WRKY45 interacts with the DELLA protein RGL1 to positively regulate age-triggered leaf senescence. Mol Plant. 2017;10(9):1174–1189. doi:10.1016/j.molp.2017.07.008.
  • Qi H, Chen X, Luo S, Fan H, Guo J, Zhang X, Ke Y, Yang P, Yu F. Genome-wide identification and characterization of heat shock protein 20 genes in maize. Life. 2022;12(9):1397. doi:10.3390/life12091397.
  • Muoki RC, Paul A, Kaachra A, Kumar S. Membrane localized thaumatin-like protein from tea (CsTLP) enhanced seed yield and the plant survival under drought stress in arabidopsis thaliana. Plant Physiol Biochem PPB. 2021;163:36–44. doi:10.1016/j.plaphy.2021.03.012.
  • Zhu H, Kranz RG. A nitrogen-regulated glutamine amidotransferase (GAT1_2.1) represses shoot branching in arabidopsis. Plant Physiol. 2012;160:1770–1780. doi:10.1104/pp.112.199364.
  • Feng R, Wang X, He L, Wang S, Li J, Jin J, Bi Y. Identification, characterization, and stress responsiveness of glucose-6-phosphate dehydrogenase genes in highland barley. Plants. 2020;9(12):1800. doi:10.3390/plants9121800.
  • Jiang Z, Wang M, Nicolas M, Ogé L, Pérez-Garcia M-D, Crespel L, Li G, Ding Y, Le Gourrierec J, Grappin P. et al. Glucose-6-phosphate dehydrogenases: the hidden players of plant physiology. Int J Mol Sci. 2022;23(24):16128. doi:10.3390/ijms232416128.
  • Wolbang CM, Ross JJ. Auxin promotes gibberellin biosynthesis in decapitated tobacco plants. Planta. 2001;214(1):153–157. doi:10.1007/s004250100663.
  • Zha M, Zhao Y, Wang Y, Chen B, Tan Z. Strigolactones and cytokinin interaction in buds in the control of rice tillering. Front Plant Sci. 2022;13:837136. doi:10.3389/fpls.2022.837136.