1,862
Views
1
CrossRef citations to date
0
Altmetric
Articles

All fiber Mach–Zehnder interferometer for simultaneous measurement of temperature and refractive index

, &

References

  • Guzmán-Sepúlveda, J.R.; Guzmán-Cabrera, R.; Castillo-Guzmán, A.A. Optical sensing using fiber-optic multimode interference devices: A review of nonconventional sensing schemes. Sensors 2021, 21, 1862. DOI: 10.3390/s21051862.
  • Liu, T.; Wang, J.; Liao, Y.; Yang, L.; Wang, S. Splicing point tapered fiber Mach-Zehnder interferometer for simultaneous measurement of temperature and salinity in seawater. Opt. Express. 2019, 27, 23905–23918. DOI: 10.1364/OE.27.023905.
  • Lin, Z.; Lv, R.; Zhao, Y.; Zheng, H. High-sensitivity salinity measurement sensor based on no-core fiber. Sens. Actuators A Phys. 2020, 305, 111947. DOI: 10.1016/j.sna.2020.111947.
  • Wan, H.; Zhang, J.; Chen, Q.; Wang, Z.; Zhang, Z. An active fiber sensor based on modal interference in few-mode fibers for dual-parameter detection. Opt. Commun. 2021, 481, 126498. DOI: 10.1016/j.optcom.
  • Liu, C.; Yang, L.; Lu, X.; Liu, Q.; Wang, F.; Lv, J.; Sun, T.; Mu, H.; Chu, P.K. Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers. Opt. Express. 2017, 25, 14227–14237. DOI: 10.1364/OE.25.0142272020.126498.
  • Zhang, W.; Gao, W.; Tong, Z.; Zhong, Y.; Xue, L.; Zhang, H. Mach–Zehnder interferometer cascaded with FBG for simultaneous measurement of RI and temperature. Opt. Commun. 2020, 466, 125624. DOI: 10.1016/j.optcom.2020.125624.
  • Zhang, M.; Hu, Z.; Wang, X.; Xue, L.; Zou, J.; Du, Y.; Wang, L. Power-type liquid-level sensor for high refractive index liquid based on long-period fiber grating. Sens. Actuators A Phys. 2021, 324, 112652. DOI: 10.1016/j.sna.2021.112652.
  • Fiorin, R.; de Oliveira, V.; Kalinowski, H.J.; Kamikawachi, R.C.; Abe, I. FBG-assisted micro-channel for refractive index measurements. IEEE Photon. Technol. Lett. 2021, 33, 35–38. DOI: 10.1109/LPT.2020.3043088.
  • Ren, F.; Zhang, W.; Li, Y.; Lan, Y.; Xie, Y.; Dai, W. The temperature compensation of FBG sensor for monitoring the stress on hole-edge. IEEE Photon. J. 2018, 10, 7104309. DOI: 10.1109/JPHOT.2018.2858847.
  • Riza, M.A.; Go, Y.I.; Harun, S.W.; Maier, R.R.J. FBG sensors for environmental and biochemical applications—A review. IEEE Sensors J. 2020, 20, 7614–7627. DOI: 10.1109/JSE.2020.2982446.
  • Stawska, H.; Popenda, M. Refractive index sensors based on long-period grating in a negative curvature hollow-core fiber. Sensors 2021, 21, 1803. DOI: 10.3390/s21051803.
  • Del Villar, I.; Socorro, A.B.; Corres, J.M.; Arregui, F.J.; Matias, I.R. Optimization of sensors based on multimode interference in single-mode–multimode–single-mode structure. J. Lightw. Technol. 2013, 31, 3460–3468.” DOI: 10.1117/1.2338565.
  • Chen, Y.; Han, Q.; Liu, T.; Lü X. Self-temperature-compensative refractometer based on singlemode – multimode – singlemode fiber structure. Sens. Actuators B. Chem. 2015, 212, 107–111. DOI: 10.1016/j.snb.2015.01.08.
  • Martins, T.J.M.; Marques, M.B.; Roy, P.; Jamier, R.; Fevrier,S.; Fevrier, O. Temperature-independent multi-parameter measurement based on a tapered Bragg fiber. IEEE Photon. Technol. Lett. 2016, 28, 1565–1568. DOI: 10.1109/LPT.2016.2555300.
  • Wang, F.; Wang, R.; Wang, X.; Liu, Y. Three-core fiber cascade asymmetric dual-taper robust structure for the simultaneous measurement of a mass concentration of a glucose solution and temperature. Opt. Commun. 2020, 461, 125227. DOI: 10.1016/j.optcom.2019.125227.
  • Gao, S.; Ji, C.; Ning, Q.; Chen, W.; Li, J. High-sensitive Mach-Zehnder interferometric temperature fiber-optic sensor based on core-offset splicing technique. Opt. Fiber Technol. 2020, 56, 102202. DOI: 10.1016/j.yofte.2020.102202.
  • Yang, B.; Niu, Y.; Yang, B.; Hu, Y.; Dai, W.; Yin, Y.; Ding, M. High sensitivity balloon-like refract metric sensor based on single mode-tapered multimode-single mode fiber. Sens. Actuators A Phys. 2018, 281, 42–47. DOI: 10.1016/j.sna.2018.08.034.
  • Tong, Z.; Zhong, Y.; Wang, X.; Zhang, W. Research on simultaneous measurement of refractive index and temperature comprising few mode fiber and spherical structure. Opt. Commun. 2018, 421, 1–6. DOI: 10.1016/j.optcom.2018.03.057.
  • Dong, Y.; Xiao, S.; Wu, B.; Xiao, H.; Jian, S. Refractive index and temperature sensor based on D-shaped fiber combined with a fiber Bragg grating. IEEE Sensors J. 2019, 19, 1362–1367. DOI: 10.1109/JSEN.2018.2880305.
  • Shi, J.; Su, G.; Xu, D.; Wang, Y.; Zhang, H.; Fu, S.; Feng, J.; Yan, C.; Xu, W.; Yao, J. A dual-parameter sensor using a long-period grating concatenated with polarization maintaining fiber in Sagnac loop. IEEE Sensors J. 2016, 16, 4326–4330. DOI: 10.1109/JSEN.2016.2544305.
  • Zhu, Y.; Zheng, J.; Deng, H.; Yuan, L.; Deng, S.; Teng, C. Refractive index and temperature measurement by cascading macrobending fiber and a sealed alternated SMF-MMF structure. Opt. Commun. 2020, 485, 126738. DOI: 10.1016/j.optcom.2020.126738.
  • Wang, F.; Pang, K.; Ma, T. Folded-tapered multimode-no-core fiber sensor for simultaneous measurement of refractive index and temperature. Opt. Laser Technol. 2020, 130, 106333. DOI: 10.1016/j.optlastec.2020.106333.
  • Dai, B.; Shen, X.; Hu, X.; Yang, L.; Li, H.; Peng, J.; Li, J. Temperature-insensitive refractive index sensor with etched microstructure fiber. Sensors 2019, 19, 3749. DOI: 10.3390/s19173749.
  • Duan, L.; Zhang, P.; Tang, M.; Wang, R.; Zhao, Z.; Fu, S.; Gan, L.; Zhu, B.; Tong, W.; Liu, D.; Liu, D.; Shum, P. P. Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing. Opt. Express. 2016, 24, 20210–20218. DOI: 10.1364/OE.24.020210.
  • Quan, X.; Fry, E.S. Empirical equation for the index of refraction of seawater. Appl. Opt. 1995, 34, 3477–3480. DOI: 10.1364/AO.34.003477.