1,134
Views
1
CrossRef citations to date
0
Altmetric
Articles

Optoacoustic quantitative in vitro detection of diabetes mellitus involving the comprehensive impacts based on improved quantum particle swarm optimized wavelet neural network

ORCID Icon, , , , , & show all

References

  • Shokrekhodaei, M.; Cistola, D.P.; Roberts, R.C.; Quinones, S. Non-invasive glucose monitoring using optical sensor and machine learning techniques for diabetes applications. IEEE Access 2021, 9, 73029–73045.
  • Han, G.; Chen, S.; Wang, X.; Wang, J.H.; Wang, H.Q.; Zhao, Z. Noninvasive blood glucose sensing by near-infrared spectroscopy based on PLSR combines SAE deep neural network approach. Infrared Phys. Tech. 2021, 113, 103620.
  • Delbeck, S.; Heise, H.M. Evaluation of opportunities and limitations of mid-infrared skin spectroscopy for noninvasive blood glucose monitoring. J. Diabetes Sci. Technol. 2021, 15, 19–27.
  • Kasahara, R.; Kino, S.; Soyama, S.; Matsuura, Y. Noninvasive glucose monitoring using mid-infrared absorption spectroscopy based on a few wavenumbers. Biomed. Opt. Express. 2018, 9, 289–302.
  • Pandey, R.; Paidi, S.K.; Valdez, T.A.; Zhang, C.; Spegazzini, N.; Dasari, R.R.; Barman, I. Noninvasive monitoring of blood glucose with Raman spectroscopy. Acc. Chem. Res. 2017, 50, 264–272.
  • Kang, J.W.; Park, Y.S.; Chang, H.; Lee, W.; Singh, S.P.; Choi, W.; Galindo, L.H.; Dasari, R.R.; Nam, S.H.; Park, J.; So, P.T.C. Direct observation of glucose fingerprint using in vivo Raman spectroscopy. Sci. Adv. 2020, 6, 5206.
  • Bolla, A.S.; Priefer, R. Blood glucose monitoring-an overview of current and future non-invasive devices. Diabetes Metab. Syndr. 2020, 14, 739–751.
  • Dremin, V.; Marcinkevics, Z.; Zherebtsov, E.; Popov, A.; Grabovskis, A.; Kronberga, H.; Geldnere, K.; Doronin, A.; Meglinski, I.; Bykov, A. Skin complications of diabetes mellitus revealed by polarized hyperspectral imaging and machine learning. IEEE Trans. Med. Imag. 2021, 40, 1207–1216.
  • Aloraynan, A.; Rassel, S.; Xu, C.; Ban, D. A single wavelength mid-infrared photoacoustic spectroscopy for noninvasive glucose detection using machine learning. Biosensors 2022, 12, 166.
  • Devadiga, D.; Ahipa, T.N. Photoacoustic spectroscopy mediated non-invasive detection of diabetics. In Advanced Bioscience and Biosystems for Detection and Management of Diabetes, Sadasivuni, K.K., Cabibihan, J.J., A M Al-Ali, A.K., Malik, R.A., Eds.; Springer: Cham, 2022; pp. 165–180.
  • Ren, Z.; Liu, T.; Liu, G. Classification and discrimination of real and fake blood based on photoacoustic spectroscopy combined with particle swarm optimized wavelet neural networks. Photoacoustics 2021, 23, 100278.
  • MacKenzie, H.A.; Ashton, H.S.; Spiers, S.; Shen, Y.C.; Freeborn, S.S.; Hannigan, J.; Lindberg, J.; Rae, P. Advances in photoacoustic noninvasive glucose testing. Clin. Chem. 1999, 45, 1587–1595.
  • Zhao, Z.; Myllylä, R. Measuring the optical parameters of weakly absorbing, highly turbid suspensions by a new technique: Photoacoustic detection of scattered light. Appl. Opt. 2005, 44, 7845–7852.
  • Matti, K.; Risto, M. Effect of glucose on photoacoustic signals at the wavelength of 1064 and 532nm in pig blood and intraliquid. J. Phys. D Appl. Phys. 2005, 38, 2654–2661.
  • Pai, P.P.; De, A.; Banerjee, S. Accuracy enhancement for noninvasive glucose estimation using dual-wavelength photoacoustic measurements and kernel-based calibration. IEEE T. Instru. Meas. 2017, 99, 1–11.
  • Tanaka, Y.; Tajima, T.; Seyama, M.; Waki, K. Differential continuous wave photoacoustic spectroscopy for non-invasive glucose monitoring. IEEE Sensors J. 2020, 20, 4453–4458.
  • Sim, J.Y.; Ahn, C.G.; Jeong, E.J.; Kim, B.K. In vivo microscopic photoacoustic spectroscopy for non-invasive glucose monitoring invulnerable to skin secretion products. Sci. Rep. 2018, 8, 1059.
  • Aloraynan, A.; Rassel, S.; Xu, C.; Ban, D.Y. Machine learning classifiers for noninvasive glucose detection using a single wavelength mid-infrared photoacoustic spectroscopy. In Proceedings of Biomedical Spectroscopy, Microscopy, and Imaging II, SPIE, 12144, 121440I, Strasbourg, France, 2022.
  • Shaikh, F.; Haworth, N.; Wells, R.; Bishop, J.; Chatterjee, S.K.; Banerjee, S.; Laha, S. Compact instrumentation for accurate detection and measurement of glucose concentration using photoacoustic spectroscopy. IEEE Access 2022, 10, 31885–31895.
  • Tao, W.; Lu, Z.; He, Q.; Lv, P.; Wang, Q.; Zhao, H. Research on the temperature characteristics of the photoacoustic sensor of glucose solution. Sensors 2018, 18, 4323.
  • Tanaka, Y.; Tajima, T.; Seyama, M.; Waki, K. Resonant photoacoustic spectroscopy for a non-invasive blood glucose monitoring: Human interface and temperature correction technology. In Proceedings of Photons plus Ultrasound: Imaging and Sensing, SPIE, San Francisco, California, USA, 2019; vol. 10878; pp. 1087841.
  • Zhao, Z.; Myllyla, R.A. Photoacoustic blood glucose and skin measurement based on optical scattering effect. In Proceedings of Saratov Fall Meeting 2001: Optical Technologies in Biophysics and Medicine III. International Society for Optics and Photonics, SPIE, Saratov, Russian Federation, 2002; vol. 4707; pp. 153–157.
  • Liu, T.; Ren, Z.; Liu, G.D.; Zhang, C.C. 11617 Photoacoustic detection of glucose for the milk-glucose mixed solution. In Proceedings of International Conference on Optoelectronic and Microelectronic Technology and Application, SPIE, Nanjing, China, 2020; pp. 13–20.
  • Ren, Z.; Liu, G.D. Effect of salt content on the photoacoustic detection of glucose solutions. In Proceedings of the14th National Conference on Laser Technology and Optoelectronics (LTO 2019), SPIE, Shanghai, China, 2019; vol. 11170; pp. 8–15.
  • Schmid, C.; Haug, C.; Heinemann, L.; Freckmann, G. System accuracy of blood glucose monitoring systems: Impact of use by patients and ambient conditions. Diabetes Technol. Ther. 2013, 15, 889–896.
  • Zainuddin, Z.; Pauline, O.; Ardil, C. A neural network approach in predicting the blood glucose level for diabetic patients. Inter. J. Comput. Inform. Eng. 2009, 3, 436–443.
  • Robertson, G.; Lehmann, E.D.; Sandham, W.; Hamilton, D.J. Blood glucose prediction using artificial neural networks trained with the AIDA diabetes simulator: A proof-of-concept pilot study. J. Electr. Comput. Eng. 2011, 2011, 1–11.
  • He, M.; Gu, W.; Kong, Y.; Zhang, L.; Costas, J.S.; Khalid, M.M. Causalbg: causal recurrent neural network for the blood glucose inference with IoT platform. IEEE Internet Things J. 2020, 7, 598–610.
  • Ben Ali, J.; Hamdi, T.; Fnaiech, N.; Di Costanzo, V.; Fnaiech, F.; Ginoux, J.-M. Continuous blood glucose level prediction of type 1 diabetes based on artificial neural network. Biocybern. Biomed. Eng. 2018, 38, 828–840.
  • Wang, J.; Wang, F.; Liu, Y.; Xu, J.; Lin, H.; Jia, B.; Zuo, W.; Jiang, Y.; Hu, L.; Lin, F. Multiple linear regression and artificial neural network to predict blood glucose in overweight patients. Exp. Clin. Endocrinol. Diabetes. 2016, 124, 34–38.
  • Alfian, G.; Syafrudin, M.; Anshari, M.; Benes, F.; Atmaji, F.T.D.; Fahrurrozi, I.; Hidayatullah, A.F.; Rhee, J. Blood glucose prediction model for type 1 diabetes based on artificial neural network with time-domain features. Biocybern. Biomed. Eng. 2020, 40, 1586–1599.
  • Tucker, A.P.; Erdman, A.G.; Schreiner, P.J.; Ma, S.S.; Chow, L.S. Examining sensor agreement in neural network blood glucose prediction. J. Diabetes Sci. Tech. 2021.
  • Yen, C.T.; Chen, U.H.; Wang, G.C.; Chen, Z.X. Non-invasive blood glucose estimation system based on a neural network with dual-wavelength photoplethysmography and bioelectrical impedance measuring. Sensors 2022, 22, 4452.
  • Tena, F.; Garnica, O.; Lanchares, J.; Hidalgo, J.I. Ensemble models of cutting-edge deep neural networks for blood glucose prediction in patients with diabetes. Sensors 2021, 21, 7090.
  • Karim, R.A.H.; Vassányi, I.; Kósa, I. After-meal blood glucose level prediction using an absorption model for neural network training. Comput. Biol. Med. 2020, 125, 103956.
  • Timonov, A. Regularization of the boundary control method for numerical solutions of the inverse problem for an acoustic wave equation. Inverse Probl. Sci. Eng. 2021, 29, 1477–1496.
  • Erkol, H.; Unlu, M.B. Spectral power density of the random excitation for the photoacoustic wave equation. AIP Adv. 2014, 4, 097103–097179.
  • Patel, C.K.N.; Tam, A.C. Pulsed optoacoustic spectroscopy of condensed matter. Rev. Mod. Phys. 1981, 53, 517–550.
  • Yang, L.; Chen, H. Fault diagnosis of gearbox based on RBF-PF and particle swarm optimization wavelet neural network. Neural Comput. Appl. 2019, 31, 4463–4478.
  • Liu, J.; Li, P.; Tang, X.; Li, J.; Chen, J. Research on improved convolutional wavelet neural network. Sci. Rep. 2021, 11, 17941.
  • Han, J.X.; Ma, M.Y.; Wang, K. Product modeling design based on genetic algorithm and BP neural network. Neural Comput. Appl. 2021, 33, 4111–4117.
  • Zhang, D.; Wang, J.; Fan, H.; Zhang, T.; Gao, J.X.; Yang, P. New method of traffic flow forecasting based on quantum particle swarm optimization strategy for intelligent transportation system. Int. J. Commun. Syst. 2021, 34, e4647.
  • Wang, F.; Zhang, H.; Zhou, A. A particle swarm optimization algorithm for mixed-variable optimization problems. Swarm Evol. Comput. 2021, 60, 100808.
  • Sun, J.; Wu, X.J.; Palade, V.; Fang, W.; Lai, C.H.; Xu, W.B. Convergence analysis and improvements of quantum-behaved particle swarm optimization. J. Inf. Sci. 2012, 193, 81–103.
  • Sun, J. Particle swarm optimization with particles having quantum, Ph.D. thesis, Jiangnan University, Wuxi, China, 2009.
  • Geng, X.; Lu, S.; Jiang, M.; Sui, Q.; Lv, S.; Xiao, H.; Jia, Y.; Jia, L. Research on FBG-based CFRP structural damage identification using BP neural network. Photonic Sens. 2018, 8, 168–175.
  • Bajaj, A.; Abraham, A.; Ratnoo, S.; Gabralla, L.A. Test case prioritization, selection, and reduction using improved quantum-behaved particle swarm optimization. Sensors 2022, 22, 4374.
  • Wang, X.; Hao, W.; Li, Q. An adaptive cultural algorithm with improved quantum-behaved particle swarm optimization for sonar image detection. Sci. Rep. 2017, 7, 17733.
  • Yu, L. Analysis of 30 Cases of Matlab Intelligent Algorithm. Beihang University Press: Beijing, 2015.
  • Mishra, P.; Woltering, E.; Harchioui, N.E. Improved prediction of 'Kent’ mango firmness during ripening by near-infrared spectroscopy supported by interval partial least square regression. Infrared Phys. Tech. 2020, 110, 103459.
  • Ren, C.; An, N.; Wang, J.; Li, L.; Hu, B.; Shang, D. Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecasting. Knowl-Based Syst. 2014, 56, 226–239.
  • Kasemsumran, S.; Du, Y.P.; Maruo, K.; Ozaki, Y. Improvement of partial least squares models for in vitro and in vivo glucose quantifications by using near-infrared spectroscopy and searching combination moving window partial least squares. Chemometr. Intell. Lab. 2006, 82, 97–103.