764
Views
0
CrossRef citations to date
0
Altmetric
Articles

Fate of ejected debris from the explosion of the rear surface of fused silica in the high-power laser facility

, , , , , , & show all

References

  • Casey, D.T.; MacGowan, B.J.; Sater, J.D.; Zylstra, A.B.; Landen, O.L.; Milovich, J.; Hurricane, O.A.; Kritcher, A.L.; Hohenberger, M.; Baker, K.; et al. Evidence of three-dimensional asymmetries seeded by high-density carbon-ablator nonuniformity in experiments at the national ignition facility. Phys. Rev. Lett. 2021, 126, 025002. DOI: 10.1103/PhysRevLett.126.025002.
  • Fleurot, N.; Cavailler, C.; Bourgade, J.L. The laser megajoule (LMJ) project dedicated to inertial confinement fusion: development and construction status. Fusion Eng. Des. 2005, 74, 147–154. DOI: 10.1016/j.fusengdes.2005.06.251.
  • Yu, H.; Jing, F.; Wei, X.; Zheng, W.; Zhang, X.; Sui, Z.; Yuan, X. Status of prototype of SG-III high-power solid-state laser. In XVII International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers, April; SPIE, 2009; Vol. 7131, pp. 284–289.
  • Zhu, D.; Li, P.; Chai, X.; Feng, B.; Peng, Z. General design and experiment for separated final optics assembly on high energy laser system. Opt. Laser Technol. 2020, 128, 106213. DOI: 10.1016/j.optlastec.2020.106213.
  • Stolz, C.J.; Qiu, S.R.; Negres, R.A.; Bass, I.L.; Miller, P.E.; Cross, D.A.; Wegner, P.J. Transport mirror laser damage mitigation technologies on the national ignition facility. In Advances in Optical Thin Films VI, June; SPIE, 2018; Vol. 10691, pp. 82–93. DOI: 10.1117/12.2323284.
  • Bude, J.; Carr, C.W.; Miller, P.E.; Parham, T.; Whitman, P.; Monticelli, M.; Raman, R.; Cross, D.; Welday, B.; Ravizza, F.; et al. Particle damage sources for fused silica optics and their mitigation on high energy laser systems. Opt. Express 2017, 25, 11414–11435. DOI: 10.1364/OE.25.011414.
  • Bercegol, H.; Lamaignere, L.; Le Garrec, B.; Loiseau, M.; Volto, P. Self-focusing and rear surface damage in a fused silica window at 1064 nm and 355 nm. In Laser-Induced Damage in Optical Materials: 2002 and 7th International Workshop on Laser Beam and Optics Characterization, May; SPIE, 2003; Vol. 4932, pp. 276–285. DOI: 10.1117/12.472374.
  • Ding, W.; Chen, M.; Cheng, J.; Liu, H.; Zhao, L.; Yang, H.; Cheng, X.; Liu, Z.; Xu, Q.; Tan, C. Laser damage evolution by defects on diamond fly-cutting KDP surfaces. Int. J. Mech. Sci. 2023, 237, 107794. DOI: 10.1016/j.ijmecsci.2022.107794.
  • Ding, W.; Cheng, J.; Zhao, L.; Wang, Z.; Yang, H.; Liu, Z.; Xu, Q.; Wang, J.; Geng, F.; Chen, M. Determination of intrinsic defects of functional KDP crystals with flawed surfaces and their effect on the optical properties. Nanoscale 2022, 14, 10041–10050. DOI: 10.1039/d2nr01862d.
  • Li, Y.; Bai, Q.; Guan, Y.; Zhang, P.; Shen, R.; Lu, L.; Liu, H.; Yuan, X.; Miao, X.; Han, W.; Yao, C. In situ plasma cleaning of large-aperture optical components in ICF. Nucl. Fusion 2022, 62, 076023. DOI: 10.1088/1741-4326/ac555c.
  • Pryatel, J.A.; Gourdin, W.H.; Frieders, S.C.; Ruble, G.S.; Monticelli, M. V. Cleaning practices and facilities for the national ignition facility (NIF). In Laser-Induced Damage in Optical Materials: 2014, October; SPIE, 2014; Vol. 9237, pp. 390–410. DOI: 10.1117/12.2075927.
  • Gourdin, W.H.; Dzenitis, E.G.; Martin, D.A.; Listiyo, K.; Sherman, G.A.; Kent, W.H.; Pryatel, J.A. In situ surface debris inspection and removal system for upward-facing transport mirrors of the national ignition facility. In Laser-Induced Damage in Optical Materials: 2004, February; SPIE, 2005; Vol. 5647, pp. 107–119. DOI: 10.1117/12.585077.
  • Peng, G.; Gao, Q.; Dong, Z.; Chen, J.; Zhang, P.; Lu, L. Low-speed gas knife protection for the large aperture optical component in high-power laser systems. Front. Phys. 2023, 11, 1061541. DOI: 10.3389/fphy.2023.1061541.
  • Yue, G.; Wang, Y.; Li, D.; Hou, L.; Cui, Z.; Li, Q.; Wang, N.; Zhao, Y. Bioinspired surface with special wettability for liquid transportation and separation. Sustain. Mater. Technol. 2020, 25, e00175. DOI: 10.1016/j.susmat.2020.e00175.
  • Larson, D.W. NIF laser line-replaceable units (LRUs). In Optical Engineering at the Lawrence Livermore National Laboratory II: The National Ignition Facility, May; SPIE, 2004; Vol. 5341, pp. 127–136.
  • Carr, C.W.; Bude, J.; Miller, P.E.; Parham, T.; Whitman, P.; Monticelli, M.; Sommer, S. Damage sources for the NIF grating debris shield (GDS) and methods for their mitigation. In Laser-Induced Damage in Optical Materials 2017, November; SPIE, 2017; Vol. 10447, p. 1044702.
  • Zhu, C.; Liang, L.; Peng, G.; Yuan, H.; Zhou, L.; Li, Y.; Zhang, L.; Lu, L. Explosion plume on the exit surface of fused silica during UV laser-induced damage. Results Phys. 2022, 32, 105094. DOI: 10.1016/j.rinp.2021.105094.
  • Cheng, X.; Miao, X.; Wang, H.; Qin, L.; Ye, Y.; He, Q.; Ma, Z.; Zhao, L.; He, S. Surface contaminant control technologies to improve laser damage resistance of optics. Adv. Condens. Matter Phys. 2014, 2014, 1–7. DOI: 10.1155/2014/974245.
  • Peng, G.; Gao, Q.; Dong, Z.; Liang, L.; Chen, J.; Zhu, C.; Zhang, P.; Lu, L. Surface cleanliness maintenance with laminar flow based on the characteristics of laser-induced sputtering particles in high-power laser systems. Micromachines 2023, 14, 598. DOI: 10.3390/mi14030598.
  • Hu, S.; Shang, Q.; Zhang, P.; Chen, J.; Zhang, F.; Miao, X. Study of airflow regime upon optic inside frequency multiplying device and achievement of cleaning technique. Optik 2021, 240, 166777. DOI: 10.1016/j.ijleo.2021.166777.
  • Choi, B.S.; Fletcher, C.A.J. Computation of particle transport in an electrostatic precipitator. J. Electrostat. 1997, 40–41, 413–418. DOI: 10.1016/S0304-3886(97)00080-6.
  • Onozuka, M.; Ueda, Y.; Oda, Y.; Takahashi, K.; Seki, Y.; Aoki, I.; Ueda, S.; Kurihara, R. Development of dust removal system using static electricity for fusion experimental reactors. J. Nucl. Sci. Technol. 1997, 34, 1031–1038. DOI: 10.1080/18811248.1997.9733785.
  • Peng, G.; Chen, J.; Lu, L.; Miao, X.; Dong, Z.; Leng, D. Dual dynamic airflow protection for the removal of fused silica micron particles in the final optics assembly. Aerosol Sci. Technol. 2020, 54, 342–352. DOI: 10.1080/02786826.2019.1699645.
  • Shen, C.; Cheng, X.; Xu, Z.; Wei, K.; Jiang, T. Observation of particle ejection behavior following laser-induced breakdown on the rear surface of a sodium chloride optical window. Opt. Eng. 2016, 56, 011009. DOI: 10.1117/1.OE.56.1.011009.
  • Feigenbaum, E.; Nielsen, N.; Matthews, M.J. Measurement of optical scattered power from laser-induced shallow pits on silica. Appl. Opt. 2015, 54, 8554–8560. DOI: 10.1364/AO.54.008554.
  • Demos, S.G.; Negres, R.A. Morphology of ejected particles and impact sites on intercepting substrates following exit-surface laser damage with nanosecond pulses in silica. Opt. Eng. 2016, 56, 011016. DOI: 10.1117/1.OE.56.1.011016.
  • Raman, R.N.; Negres, R.A.; DeMange, P.; Demos, S.G. Time-resolved imaging of material response following laser-induced breakdown in the bulk and surface of fused silica. In High Energy/Average Power Lasers and Intense Beam Applicatio ns IV, February; SPIE, 2010; Vol. 7581, pp. 101–111. DOI: 10.1117/12.842301.
  • Dong, Z.; Yan, Y.; Peng, G.; Li, C.; Geng, Y. Effects of sandwiched film thickness and cutting tool water contact angle on the processing outcomes in nanoskiving of nanowires. Materials & Design 2023, 225, 111438 10.1016/j.matdes.2022.111438.
  • Peng, G.; Zhang, P.; Dong, Z.; Chen, J.; Liang, L.; Zhu, C.; Gao, Q.; Lu, L. Spatial sputtering of fused silica after a laser-induced exploding caused by a 355 nm Nd: YAG Laser. Front. Phys. 2022, 10, 980249. DOI: 10.3389/fphy.2022.980249.
  • Tran, K.A.; Grigorov, Y.V.; Nguyen, V.H.; Rehman, Z.U.; Le, N.T.; Janulewicz, K.A. Time-resolved shadowgraphy of optical breakdown in fused silica. In Pacific Rim Laser Damage 2015: Optical Materials for High-Power Lasers, July; SPIE, 2015; Vol. 9532, p. 953205. DOI: 10.1117/12.2185910.
  • Papazoglou, D. G.; Karaiskou, A.; Zergioti, I.; Fotakis, C. Shadowgraphic imaging of the sub-ps laser-induced forward transfer process. Appl. Phys. Lett. 2002, 81, 1594–1596. DOI: 10.1063/1.1497191.
  • Raman, R. N.; Negres, R. A.; Demos, S. G. Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example. Opt. Eng. 2011, 50, 013602. DOI: 10.1117/1.3526689.
  • Hu, S.; Zhang, F.; Shang, Q.; Chen, J.; Lu, L.; Miao, X.; Niu, L.; Liu, H.; Zhou, G.; Yuan, X. Optimization of cleaning technique for mitigating particulate contamination upon final optics assemblies. Optik 2021, 231, 166365. DOI: 10.1016/j.ijleo.2021.166365.
  • Fan, S.C.; Lee, C.K.; Kang, K.W.; Wu, Z.J. Validation of a flight model for predicting debris trajectory from the explosion of an ammunition storage magazine. J. Wind Eng. Ind Aerodyn. 2015, 136, 114–126. DOI: 10.1016/j.jweia.2014.11.004.
  • Demos, S.G.; Negres, R.A.; Raman, R.N.; Rubenchik, A.M.; Feit, M.D. Comparison of material response in fused silica and KDP following exit surface laser-induced breakdown. In Laser-Induced Damage in Optical Materials: 2013; SPIE, 2013; Vol. 8885, pp. 132–137.
  • Bharati, M.S.S.; Soma, V.R. Flexible SERS substrates for hazardous materials detection: recent advances. OEA 2021, 4, 210048–210048. DOI: 10.29026/oea.2021.210048.
  • Xu, K.; Zhang, C.; Zhou, R.; Ji, R.; Hong, M. Hybrid micro/nano-structure formation by angular laser texturing of Si surface for surface enhanced Raman scattering. Opt. Express 2016, 24, 10352–10358. DOI: 10.1364/OE.24.010352.
  • Bai, Q.; Li, Y.; Zhang, K.; Wang, C.; Yuan, X.; Zhang, F. Cleaning state of the loop case for optical crystal module in final optics assembly. Nanomanuf. Metrol. 2018, 1, 260–267. DOI: 10.1007/s41871-018-0029-4.
  • Mu, L.; Wang, S.; Zhai, Z.; Shang, Y.; Zhao, C.; Zhao, L.; Yin, H. Unsteady CFD simulation on ash particle deposition and removal characteristics in tube banks: focusing on particle diameter, flow velocity, and temperature. J. Inst. Energy 2020, 93, 1481–1494. DOI: 10.1016/j.joei.2020.01.010.
  • Menter, F.R. Review of the shear-stress transport turbulence model experience from an industrial perspective. International Journal of Computational Fluid Dynamics 2009, 23, 305–316. DOI: 10.1080/10618560902773387.
  • Richards, P.J. Dispersion of windborne debris. J. Wind Eng. Ind Aerodyn. 2012, 104–106, 594–602. DOI: 10.1016/j.jweia.2012.02.026.
  • Haider, A.; Levenspiel, O. Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol. 1989, 58, 63–70. DOI: 10.1016/0032-5910(89)80008-7.
  • Raman, R.N.; Elhadj, S.; Negres, R.A.; Matthews, M.J.; Feit, M.D.; Demos, S.G. Characterization of ejected fused silica particles following surface breakdown with nanosecond pulses. Opt. Express. 2012, 20, 27708–27724. DOI: 10.1364/OE.20.027708.
  • Peng, G.; Lu, L.H.; Dong, Z. Propagation of laser-induced particles from fused silica. Chin. J. Lasers 2019, 46, 0403001.
  • Demos, S.G.; Negres, R.A.; Raman, R.N.; Rubenchik, A.M.; Feit, M.D. Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica. Laser Photon. Rev. 2013, 7, 444–452. DOI: 10.1002/lpor.201200100.
  • Yang, H.; Gun, X.; Pang, G.; Zheng, Z.; Li, C.; Yang, C.; Wang, M.; Xu, K. Femtosecond laser patterned superhydrophobic/hydrophobic SERS sensors for rapid positioning ultratrace detection. Opt. Express 2021, 29, 16904–16913. DOI: 10.1364/OE.423789.
  • Xu, K.; Yan, H.; Tan, C.F.; Lu, Y.; Li, Y.; Ho, G. W.; Ji, R.; Hong, M. Hedgehog inspired CuO nanowires/Cu2O composites for broadband visible‐light‐driven recyclable surface enhanced Raman scattering. Adv. Opt. Mater. 2018, 6, 1701167. DOI: 10.1002/adom.201701167.
  • Raman, R.N.; Negres, R.A.; Demos, S.G. Imaging system to measure kinetics of material cluster ejection during exit-surface damage initiation and growth in fused silica. In Laser-Induced Damage in Optical Materials: 2009, December; SPIE, 2009; Vol. 7504, pp. 421–431. DOI: 10.1117/12.836922.
  • Raman, R.N.; Negres, R.A.; Demos, S.G. Kinetics of ejected particles during breakdown in fused silica by nanosecond laser pulses. Appl. Phys. Lett. 2011, 98, 051901. DOI: 10.1063/1.3549193.
  • Demos, S.G.; Negres, R.A.; Raman, R.N.; Feit, M.D.; Manes, K.R.; Rubenchik, A.M. Relaxation dynamics of nanosecond laser superheated material in dielectrics. Optica 2015, 2, 765–772. DOI: 10.1364/OPTICA.2.000765.