797
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Ni-PI-Ni based nanoarchitectonics near-perfect metamaterial absorber with incident angle stability for visible and near-infrared applications

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , & show all

References

  • Alam, T.; Almutairi, A.F.; Samsuzzaman, M.; Cho, M.; Islam, M.T. Metamaterial array based meander line planar antenna for cube satellite communication. Sci. Rep. 2021, 11, 14087. DOI: 10.1038/s41598-021-93537-6.
  • Hakim, M.L.; Alam, T.; Islam, M.T.; Mohd Sahar, N.B.; Jit Singh, M.S.; Alsaif, H.; Soliman, M.S. Metamaterial physical property utilized antenna radiation pattern deflection for angular coverage and isolation enhancement of mm-wave 5G MIMO antenna system. Radiat. Phys. Chem. 2023, 209, 110998. DOI: 10.1016/j.radphyschem.2023.110998.
  • Deng, X.; Shen, Y.; Liu, B.; Song, Z.; He, X.; Zhang, Q.; Ling, D.; Liu, D.; Wei, D. Terahertz metamaterial sensor for sensitive detection of citrate salt solutions. Biosensors 2022, 12, 408. DOI: 10.3390/bios12060408.
  • Li, Z.; Cheng, Y.; Luo, H.; Chen, F.; Li, X. Dual-band tunable terahertz perfect absorber based on all-dielectric InSb resonator structure for sensing application. J. Alloys Compd. 2022, 925, 166617. DOI: 10.1016/j.jallcom.2022.166617.
  • Ryan, K.R.; Down, M.P.; Banks, C.E. Future of additive manufacturing: Overview of 4D and 3D printed smart and advanced materials and their applications. Chem. Eng. J. 2021, 403, 126162. DOI: 10.1016/j.cej.2020.126162.
  • Quan, C.; Zou, J.; Guo, C.; Xu, W.; Zhu, Z.; Zhang, J. High-temperature resistant broadband infrared stealth metamaterial absorber. Optic. Laser Technol. 2022, 156, 108579. DOI: 10.1016/j.optlastec.2022.108579.
  • Baqir, M.; Choudhury, P.; Akhtar, M.N. ZrN fractal-graphene-based metamaterial absorber in the visible and near-IR regimes. Optik 2021, 237, 166769. DOI: 10.1016/j.ijleo.2021.166769.
  • Hoa, N.T.Q.; Lam, P.H.; Tung, P.D.; Tuan, T.S.; Nguyen, H. Numerical study of a wide-angle and polarization-insensitive ultrabroadband metamaterial absorber in visible and near-infrared region. IEEE Photonics J. 2019, 11, 1–8. DOI: 10.1109/JPHOT.2018.2888971.
  • Hakim, M.L.; Alam, T.; Islam, M.T. Polarization insensitive and oblique incident angle stable miniaturized conformal FSS for 28/38 GHz mm-wave band 5G EMI shielding applications. Antennas Wirel. Propag. Lett. 2023, 22, 2644–2648. DOI: 10.1109/LAWP.2023.3284860.
  • Misran, N.; Yusop, S.H.; Islam, M.T.; Ismail, M.Y. Analysis of parameterization substrate thickness and permittivity for concentric split ring square reflectarray element. Jurnal Kejuruteraan [J. Eng.] 2012, 23, 11–16.
  • Cheng, Y.; Zhao, J. Simple design of a six-band terahertz perfect metasurface absorber based on a single resonator structure. Phys. Scr. 2022, 97, 095508. DOI: 10.1088/1402-4896/ac8ad6.
  • Hakim, M.L.; Hanif, A.; Alam, T.; Islam, M.T.; Arshad, H.; Soliman, M.S.; Albadran, S.M.; Islam, M.S. Ultrawideband polarization-independent nanoarchitectonics: A perfect metamaterial absorber for visible and infrared optical window applications. Nanomaterials 2022, 12, 2849. DOI: 10.3390/nano12162849.
  • Zhao, Y.; Yu, C.; Zhang, W. Ultrabroadband near-perfect anisotropic metamaterial absorber based on a curved periodic W/TPX stack. Nanoscale Microscale Thermophys. Eng. 2019, 23, 67–78. DOI: 10.1080/15567265.2019.1567633.
  • Xu, J.; Fan, Y.; Su, X.; Guo, J.; Zhu, J.; Fu, Q.; Zhang, F. Broadband and wide angle microwave absorption with optically transparent metamaterial. Opt. Mater. 2021, 113, 110852. DOI: 10.1016/j.optmat.2021.110852.
  • Wang, Y.; Chen, K.; Lin, Y.-S.; Yang, B.-R. Plasmonic metasurface with quadrilateral truncated cones for visible perfect absorber. Physica E. 2022, 139, 115140. DOI: 10.1016/j.physe.2022.115140.
  • Shokorlou, Y.M.; Heidarzadeh, H. Multispectral plasmonic biosensors based on a penta-supercell metamaterial for detection of prostate-specific antigen: Ultrasensitive in LC resonance mode. Biosens. Bioelectron. 2022, 217, 114722. DOI: 10.1016/j.bios.2022.114722.
  • Bilal, R.M.H.; Saeed, M.A.; Choudhury, P.K.; Baqir, M.A.; Kamal, W.; Ali, M.M.; Rahim, A.A. Elliptical metallic rings-shaped fractal metamaterial absorber in the visible regime. Sci. Rep. 2020, 10, 14035. DOI: 10.1038/s41598-020-71032-8.
  • Cheng, Y.; Qian, Y.; Luo, H.; Chen, F.; Cheng, Z. Terahertz narrowband perfect metasurface absorber based on micro-ring-shaped GaAs array for enhanced refractive index sensing. Physica E 2023, 146, 115527. DOI: 10.1016/j.physe.2022.115527.
  • Chowdhury, M.Z.B.; Islam, M.T.; Hossain, I.; Alsaif, H.; Alshammari, A.S.; Alzamil, A.; Samsuzzaman, M. A bendable wide oblique incident angle stable polarization insensitive metamaterials absorber for visible optical wavelength applications. Optik 2023, 286, 171016. DOI: 10.1016/j.ijleo.2023.171016.
  • Fang, J.; Wang, B. Optical capture capability enhancement by right-angled triangular visible absorber. Phys. Lett. A. 2021, 404, 127404. DOI: 10.1016/j.physleta.2021.127404.
  • Mahmud, S.; Islam, S.S.; Mat, K.; Chowdhury, M.E.; Rmili, H.; Islam, M.T. Design and parametric analysis of a wide-angle polarization-insensitive metamaterial absorber with a star shape resonator for optical wavelength applications. Results Phys. 2020, 18, 103259. DOI: 10.1016/j.rinp.2020.103259.
  • Wu, X.; Fu, C. Ultra-broadband perfect absorption with stacked asymmetric hyperbolic metamaterial slabs. Nanoscale Microscale Thermophys. Eng. 2018, 22, 114–123. DOI: 10.1080/15567265.2018.1434844.
  • Dang, P.T.; Kim, J.; Nguyen, T.K.; Le, K.Q.; Lee, J.-H. Ultra-broadband metamaterial absorber for high solar thermal energy conversion efficiency. Physica B. 2021, 620, 413261. DOI: 10.1016/j.physb.2021.413261.
  • Liu, J.; Ma, W.-Z.; Chen, W.; Yu, G.-X.; Chen, Y.-S.; Deng, X.-C.; Yang, C.-F. Numerical analysis of an ultra-wideband metamaterial absorber with high absorptivity from visible light to near-infrared. Opt. Express. 2020, 28, 23748–23760. DOI: 10.1364/OE.399198.
  • Liu, Z.; Liu, G.; Huang, Z.; Liu, X.; Fu, G. Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface. Sol. Energy Mater. Sol. Cells. 2018, 179, 346–352. DOI: 10.1016/j.solmat.2017.12.033.
  • Wang, H.; Sivan, V.P.; Mitchell, A.; Rosengarten, G.; Phelan, P.; Wang, L. Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting. Sol. Energy Mater. Sol. Cells. 2015, 137, 235–242. DOI: 10.1016/j.solmat.2015.02.019.
  • Pashaei Adl, H.; Gorji, S.; Gualdrón-Reyes, A.F.; Mora-Seró, I.; Suárez, I.; Martínez-Pastor, J.P. Enhanced spontaneous emission of CsPbI3 perovskite nanocrystals using a hyperbolic metamaterial modified by dielectric nanoantenna. Nanomaterials 2022, 13, 11. DOI: 10.3390/nano13010011.
  • Ma, S.; Wen, S.; Mi, X.; Zhao, H.; Zhao, J. Bifunctional terahertz sensor based on tunable graphene metamaterial absorber. Opt. Commun. 2023, 532, 129254. DOI: 10.1016/j.optcom.2022.129254.
  • Islam, M.R., Islam, M.T., Soliman, M.S., Bais, B., Singh, M.J., Alsaif, H., Islam, M.S. Metamaterial sensor based on reflected mirror rectangular split ring resonator for the application of microwave sensing. Measurement 2022, 198, 111416.
  • Huo, D.; Zhang, J.; Wang, H.; Ren, X.; Wang, C.; Su, H.; Zhao, H. Broadband perfect absorber with monolayer MoS 2 and hexagonal titanium nitride nano-disk array. Nanoscale Res. Lett. 2017, 12, 465. DOI: 10.1186/s11671-017-2232-4.
  • Mahmud, S.; Karim, M.; Islam, S.S.; Shuvo, M.M.K.; Akter, T.; Almutairi, A.F.; Islam, M.T. A multi-band near perfect polarization and angular insensitive metamaterial absorber with a simple octagonal resonator for visible wavelength. IEEE Access 2021, 9, 117746–117760. DOI: 10.1109/ACCESS.2021.3106588.
  • Naveed, M.A.; Bilal, R.M.H.; Baqir, M.A.; Bashir, M.M.; Ali, M.M.; Rahim, A.A. Ultrawideband fractal metamaterial absorber made of nickel operating in the UV to IR spectrum. Opt. Express. 2021, 29, 42911–42923. DOI: 10.1364/OE.446423.
  • Huang, Z.; Wang, B. Ultra-broadband metamaterial absorber for capturing solar energy from visible to near infrared. Surf. Interfaces. 2022, 33, 102244. DOI: 10.1016/j.surfin.2022.102244.
  • Liu, Y.; Ma, W.-Z.; Wu, Y.-C.; Meng, D.; Dou, C.; Cheng, Y.-Y.; Chen, Y.-S.; Liu, J.; Gu, Y. A metamaterial absorber with a multi-layer metal–dielectric grating structure from visible to near-infrared. Opt. Commun. 2023, 542, 129588. DOI: 10.1016/j.optcom.2023.129588.
  • Wang, Y.; Xuan, X.-F.; Zhu, L.; Yu, H.-J.; Gao, Q.; Ge, X.-L. Numerical study of an ultra-broadband, wide-angle, polarization-insensitive absorber in visible and infrared region. Opt. Mater. 2021, 114, 110902. DOI: 10.1016/j.optmat.2021.110902.
  • Parsamyan, H. Near-perfect broadband infrared metamaterial absorber utilizing nickel. Appl. Opt. 2020, 59, 7504–7509. DOI: 10.1364/AO.398609.
  • Bilal, R.M.H.; Saeed, M.A.; Naveed, M.A.; Zubair, M.; Mehmood, M.Q.; Massoud, Y. Nickel-based high-bandwidth nanostructured metamaterial absorber for visible and infrared spectrum. Nanomaterials 2022, 12, 3356. DOI: 10.3390/nano12193356.
  • Wang, Y.; Ni, B.; Liu, F.; Chen, L.; Wang, R. Design of a visible broadband metamaterial absorber based on nickel metal. J. Russ. Laser Res. 2022, 43, 600–606. DOI: 10.1007/s10946-022-10085-8.
  • Thomas, S.; Visakh, P. Handbook of Engineering and Specialty Thermoplastics, Volume 4: Nylons. Hoboken, New Jersey: John Wiley & Sons, 2011.
  • Lang, T.; Zhang, J.; Qiu, Y.; Hong, Z.; Liu, J. Flexible terahertz metamaterial sensor for sensitive detection of imidacloprid. Opt. Commun. 2023, 537, 129430. DOI: 10.1016/j.optcom.2023.129430.
  • C. S. Suit. CST studio suit [Online]. Available at https://www.3ds.com/products/services/simulia/products/cst-studio-suite/. 2022.
  • Hanif, A.; Hakim, M.L.; Alam, T.; Islam, M.T.; Alsaif, H.; Soliman, M.S. Polarization insensitive oblique incident angle stable ultra-thin nano ring resonator-based metamaterial absorber for visible and near-infrared region applications. Optic. Laser Technol. 2023, 164, 109494. DOI: 10.1016/j.optlastec.2023.109494.
  • Hakim, M.L.; Alam, T.; Soliman, M.S.; Sahar, N.M.; Baharuddin, M.H.; Almalki, S.H.A.; Islam, M.T. Polarization insensitive symmetrical structured double negative (DNG) metamaterial absorber for Ku-band sensing applications. Sci. Rep. 2022, 12, 479. DOI: 10.1038/s41598-021-04236-1.
  • Tuan, T.S.; Hoa, N.T.Q. Numerical study of an efficient broadband metamaterial absorber in visible light region. IEEE Photonics J. 2019, 11, 1–10. DOI: 10.1109/JPHOT.2019.2910806.
  • Long, C.; Yin, S.; Wang, W.; Li, W.; Zhu, J.; Guan, J. Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode. Sci. Rep. 2016, 6, 21431. DOI: 10.1038/srep21431.
  • Cheng, Y.; Chen, F.; Luo, H. Plasmonic chiral metasurface absorber based on bilayer fourfold twisted semicircle nanostructure at optical frequency. Nanoscale Res. Lett. 2021, 16, 12. DOI: 10.1186/s11671-021-03474-6.
  • Musa, A.; Hakim, M.L.; Alam, T.; Baharuddin, M.H.; Singh, M.S.J. Dual-band metamaterial absorber for Ka-band satellite application. In 2021 7th International Conference on Space Science and Communication (IconSpace), IEEE, 2021; pp. 151–155.
  • Hakim, M.L.; Alam, T.; Islam, M.T.; Alsaif, H.; Soliman, M.S. Polarization-independent fractal square splits ring resonator (FSSRR) multiband metamaterial absorber/artificial magnetic conductor/sensor for Ku/K/Ka/5G (mm-wave) band applications. Measurement 2023, 210, 112545. DOI: 10.1016/j.measurement.2023.112545.
  • Bilal, R.M.H.; Zakir, S.; Naveed, M.A.; Zubair, M.; Mehmood, M.Q.; Massoud, Y. Nanoengineered nickel-based ultrathin metamaterial absorber for the visible and short-infrared spectrum. Opt. Mater. Express. 2023, 13, 28–40. DOI: 10.1364/OME.476837.
  • Dey, S.; Dey, S. Conformal miniaturized angular stable triband frequency selective surface for EMI shielding. IEEE Trans. Electromagn. Compat. 2022, 64, 1031–1041. DOI: 10.1109/TEMC.2022.3153998.
  • Cai, C., Han, S., Zhang, X., Yu, J., Xiang, X., Yang, J.; Qiao, L.; Zu, X.; Chen, Y.; Li, S. Ultrahigh oxygen evolution reaction activity in Au doped co-based nanosheets. RSC Adv. 2022, 12, 6205–6213. DOI: 10.1039/d1ra09094a.
  • Baqir, M.A. Wide-band and wide-angle, visible-and near-infrared metamaterial-based absorber made of nanoholed tungsten thin film. Opt. Mater. Express. 2019, 9, 2358–2367. DOI: 10.1364/OME.9.002358.
  • Liang, S.; Xu, F.; Yang, H.; Cheng, S.; Yang, W.; Yi, Z.; Song, Q.; Wu, P.; Chen, J.; Tang, C. Ultra long infrared metamaterial absorber with high absorption and broad band based on nano cross surrounding. Optics Laser Technol. 2023, 158, 108789. DOI: 10.1016/j.optlastec.2022.108789.
  • Padilla, W.J.; Averitt, R.D. Imaging with metamaterials. Nat. Rev. Phys. 2021, 4, 85–100. DOI: 10.1038/s42254-021-00394-3.