415
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The elasticity and piezoelectricity of AlN containing charged vacancies

, &

References

  • Hu, Y.; Parida, K.; Zhang, H.; Wang, X.; Li, Y.; Zhou, X.; Morris, S. A.; Liew, W. H.; Wang, H.; Li, T.; Jiang, F.; Yang, M.; Alexe, M.; Du, Z.; Gan, C. L.; Yao, K.; Xu, B.; Lee, P. S.; Fan, H. J. Bond engineering of molecular ferroelectrics renders soft and high-performance piezoelectric energy harvesting materials. Nat. Commun. 2022, 13, 5607. DOI: 10.1038/s41467-022-33325-6.
  • Villafuerte, J.; Zhang, X.; Sarigiannidou, E.; Donatini, F.; Chaix-Pluchery, O.; Rapenne, L.; Le, M.-Q.; Petit, L.; Pernot, J.; Consonni, V. Boosting the piezoelectric coefficients of flexible dynamic strain sensors made of chemically-deposited ZnO nanowires using compensatory Sb doping. Nano Energy 2023, 114, 108599. DOI: 10.1016/j.nanoen.2023.108599.
  • Lu, H.; Cui, H.; Lu, G.; Jiang, L.; Hensleigh, R.; Zeng, Y.; Rayes, A.; Panduranga, M. K.; Acharya, M.; Wang, Z.; Irimia, A.; Wu, F.; Carman, G. P.; Morales, J. M.; Putterman, S.; Martin, L. W.; Zhou, Q.; Zheng, X. 3D printing and processing of miniaturized transducers with near-pristine piezoelectric ceramics for localized cavitation. Nat. Commun. 2023, 14, 2418. DOI: 10.1038/s41467-023-37335-w.
  • Huang, M.; Zhu, M.; Feng, X.; Zhang, Z.; Tang, T.; Guo, X.; Chen, T.; Liu, H.; Sun, L.; Lee, C. Intelligent cubic-designed piezoelectric node (iCUPE) with simultaneous sensing and energy harvesting ability toward self-sustained artificial intelligence of things (AIoT). ACS Nano. 2023, 17, 6435–6451. DOI: 10.1021/acsnano.2c11366.
  • Sun, Z.; Zhang, Z.; Lee, C. A skin-like multimodal haptic interface. Nat. Electron. 2023, 6, 941–942. DOI: 10.1038/s41928-023-01093-w.
  • Le, X.; Shi, Q.; Vachon, P.; Ng, E. J.; Lee, C. Piezoelectric MEMS-evolution from sensing technology to diversified applications in the 5G/internet of things (IoT) era. J. Micromech. Microeng. 2021, 32, 014005. DOI: 10.1088/1361-6439/ac3ab9.
  • Dong, B.; Shi, Q.; Yang, Y.; Wen, F.; Zhang, Z.; Lee, C. Technology evolution from self-powered sensors to AIoT enabled smart homes. Nano Energy 2021, 79, 105414. DOI: 10.1016/j.nanoen.2020.105414.
  • Sun, C.; Shi, Q.; Yazici, M. S.; Kobayashi, T.; Liu, Y.; Lee, C. Investigation of broadband characteristics of multi-frequency piezoelectric micromachined ultrasonic transducer (MF-pMUT). IEEE Sensors J. 2019, 19, 860–867. DOI: 10.1109/JSEN.2018.2878785.
  • Sun, C.; Shi, Q.; Yazici, M. S.; Lee, C.; Liu, Y. Development of a highly sensitive humidity sensor based on a piezoelectric micromachined ultrasonic transducer array functionalized with graphene oxide thin film. Sensors 2018, 18, 4352. DOI: 10.3390/s18124352.
  • Chen, X.; Liu, X.; Wang, T.; Le, X.; Ma, F.; Lee, C.; Xie, J. Piezoelectric micromachined ultrasonic transducers with low thermoelastic dissipation and high quality factor. J. Micromech. Microeng. 2018, 28, 057001. DOI: 10.1088/1361-6439/aab1bc.
  • Liu, H.; Zhang, S.; Kobayashi, T.; Chen, T.; Lee, C. Flow sensing and energy harvesting characteristics of a wind‐driven piezoelectric Pb(Zr0.52, Ti0.48)O3 microcantilever. Micro & Nano Letters. 2014, 9, 286–289. DOI: 10.1049/mnl.2013.0750.
  • Li, D. X.; Yadav, A.; Zhou, H.; Roy, K.; Thanasekaran, P.; Lee, C. Advances and applications of metal-organic frameworks (MOFs) in emerging technologies: A comprehensive review. Glob. Chall. 2023, 8, 2300244. DOI: 10.1002/gch2.202300244.
  • Nakamura, T.; Nakao, Y.; Kamisawa, A.; Takasu, H. Preparation of Pb(Zr,Ti)O3 thin films on electrodes including h-O2. Appl. Phys. Lett. 1994, 65, 1522–1524. DOI: 10.1063/1.112031.
  • Li, F.; Cabral, M. J.; Xu, B.; Cheng, Z.; Dickey, E. C.; LeBeau, J. M.; Wang, J.; Luo, J.; Taylor, S.; Hackenberger, W.; Bellaiche, L.; Xu, Z.; Chen, L. Q.; Shrout, T. R.; Zhang, S. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Science 2019, 364, 264–268. DOI: 10.1126/science.aaw2781.
  • Dubois, M. A.; Muralt, P. Properties of aluminum nitride thin films for piezoelectric transducers and microwave filter applications. Appl. Phys. Lett. 1999, 74, 3032–3034. DOI: 10.1063/1.124055.
  • Liu, H.; Zhong, J.; Lee, C.; Lee, S. W.; Lin, L. A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Appl. Phys. Rev. 2018, 5, 041306. DOI: 10.1063/1.5074184.
  • Sinha, N.; Wabiszewski, G. E.; Mahameed, R.; Felmetsger, V. V.; Tanner, S. M.; Carpick, R. W.; Piazza, G. Piezoelectric aluminum nitride nanoelectromechanical actuators. Appl. Phys. Lett. 2009, 95, 053106. DOI: 10.1063/1.3194148.
  • Koppe, T.; Hofsäss, H.; Vetter, U. Overview of band-edge and defect related luminescence in aluminum nitride. J. Lumin. 2016, 178, 267–281. DOI: 10.1016/j.jlumin.2016.05.055.
  • Mohammad, R.; Katırcıoğlu, Ş. Structural properties of alumnum nitride compound. Indian J. Phys. 2014, 88, 1021–1029. DOI: 10.1007/s12648-014-0517-3.
  • Lv, Q.; Qiu, J.; Zhang, H.; Wen, Q.; Yu, J. The effect and mechanism for doping concentration of Mg-Hf on the piezoelectric properties for AlN. Mater. Res. Express. 2023, 10, 065002. DOI: 10.1088/2053-1591/acda13.
  • Pinto, R. M. R.; Gund, V.; Dias, R. A.; Nagaraja, K. K.; Vinayakumar, K. B. CMOS-integrated aluminum nitride MEMS: A review. J. Microelectromech. Syst. 2022, 31, 500–523. DOI: 10.1109/JMEMS.2022.3172766.
  • Zhu, J.; Zhu, M.; Shi, Q.; Wen, F.; Liu, L.; Dong, B.; Haroun, A.; Yang, Y.; Vachon, P.; Guo, X.; He, T.; Lee, C. Progress inTENGtechnology-a journey from energy harvesting to nanoenergy and nanosystem. EcoMat 2020, 2, e12058. DOI: 10.1002/eom2.12058.
  • Shi, Q.; Dong, B.; He, T.; Sun, Z.; Zhu, J.; Zhang, Z.; Lee, C. Progress in Wearable Electronics/photonics-Moving toward the Era of Artificial Intelligence and Internet of Things. InfoMat 2020, 2, 1131–1162. DOI: 10.1002/inf2.12122.
  • Zhu, J.; Liu, X.; Shi, Q.; He, T.; Sun, Z.; Guo, X.; Liu, W.; Sulaiman, O. B.; Dong, B.; Lee, C. Development trends and perspectives of future sensors and MEMS/NEMS. Micromachines 2019, 11, 1–30. DOI: 10.3390/mi11010007.
  • Zhu, M.; Shi, Q.; He, T.; Yi, Z.; Ma, Y.; Yang, B.; Chen, T.; Lee, C. Self-powered and self-functional cotton sock using piezoelectric and triboelectric hybrid mechanism for healthcare and sports monitoring. ACS Nano. 2019, 13, 1940–1952. DOI: 10.1021/acsnano.8b08329.
  • Sun, C.; Shi, Q.; Hasan, D.; Yazici, M. S.; Zhu, M.; Ma, Y.; Dong, B.; Liu, Y.; Lee, C. Self-powered multifunctional monitoring system using hybrid integrated triboelectric nanogenerators and piezoelectric microsensors. Nano Energy 2019, 58, 612–623. DOI: 10.1016/j.nanoen.2019.01.096.
  • Wang, T.; Kobayashi, T.; Yang, B.; Wang, H.; Lee, C. Highly sensitive piezoelectric micromachined ultrasonic transducer (pMUT) operated in air. Micro Nano Lett. 2016, 11, 558–562. DOI: 10.1049/mnl.2016.0207.
  • Shi, Q.; Wang, T.; Kobayashi, T.; Lee, C. Investigation of geometric design in piezoelectric microelectromechanical systems diaphragms for ultrasonic energy harvesting. Appl. Phys. Lett. 2016, 108, 193902. DOI: 10.1063/1.4948973.
  • Wang, T.; Lee, C. Zero-bending piezoelectric micromachined ultrasonic transducer (pMUT) with enhanced transmitting performance. J. Microelectromech. Syst. 2015, 24, 2083–2091. DOI: 10.1109/JMEMS.2015.2472958.
  • Wang, T.; Sawada, R.; Lee, C. A piezoelectric micromachined ultrasonic transducer using piston-like membrane motion. IEEE Electron Device Lett. 2015, 36, 957–959. DOI: 10.1109/LED.2015.2459075.
  • Wang, T.; Kobayashi, T.; Lee, C. Micromachined piezoelectric ultrasonic transducer with ultra-wide frequency bandwidth. Appl. Phys. Lett. 2015, 106, 013501. DOI: 10.1063/1.4905441.
  • Rong, Z.; Zhang, M.; Ning, Y.; Pang, W. An ultrasound-induced wireless power supply based on aln piezoelectric micromachined ultrasonic transducers. Sci. Rep. 2022, 12, 16174. DOI: 10.1038/s41598-022-19693-5.
  • Huang, L.; Li, W.; Luo, G.; Lu, D.; Zhao, L.; Yang, P.; Wang, X.; Wang, J.; Lin, Q.; Jiang, Z. Piezoelectric-AlN resonators at two-dimensional flexural modes for the density and viscosity decoupled determination of liquids. Microsyst. Nanoeng. 2022, 8, 38. DOI: 10.1038/s41378-022-00368-0.
  • Liu, L.; Shi, Q.; Guo, X.; Zhang, Z.; Lee, C. A facile frequency tuning strategy to realize vibration‐based hybridized piezoelectric‐triboelectric nanogenerators. EcoMat 2022, 5, 1–12. DOI: 10.1002/eom2.12279.
  • Shi, Q.; Wang, T.; Lee, C. MEMS based broadband piezoelectric ultrasonic energy harvester (PUEH) for enabling self-powered implantable biomedical devices. Sci. Rep. 2016, 6, 24946. DOI: 10.1038/srep24946.
  • Liu, H.; Lee, C.; Kobayashi, T.; Tay, C. J.; Quan, C. Piezoelectric MEMS-based wideband energy harvesting systems using a frequency-up-conversion cantilever stopper. Sens. Actuators, A. 2012, 186, 242–248. DOI: 10.1016/j.sna.2012.01.033.
  • Liu, H.; Zhang, S.; Kathiresan, R.; Kobayashi, T.; Lee, C. Development of piezoelectric microcantilever flow sensor with wind-driven energy harvesting capability. Appl. Phys. Lett. 2012, 100, 223905. DOI: 10.1063/1.4723846.
  • Liu, H.; Lee, C.; Kobayashi, T.; Tay, C. J.; Quan, C. A new S-shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30 Hz. Microsyst. Technol. 2012, 18, 497–506. DOI: 10.1007/s00542-012-1424-1.
  • Liu, H.; Lee, C.; Kobayashi, T.; Tay, C. J.; Quan, C. Investigation of a MEMS piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers. Smart Mater. Struct. 2012, 21, 035005. DOI: 10.1088/0964-1726/21/3/035005.
  • Mariello, M.; Blad, T. W. A.; Mastronardi, V. M.; Madaro, F.; Guido, F.; Staufer, U.; Tolou, N.; De Vittorio, M. Flexible piezoelectric AlN transducers buckled through package-induced preloading for mechanical energy harvesting. Nano Energy 2021, 85, 105986. DOI: 10.1016/j.nanoen.2021.105986.
  • Qiao, Q.; Liu, X.; Ren, Z.; Dong, B.; Xia, J.; Sun, H.; Lee, C.; Zhou, G. MEMS-enabled on-chip computational mid-infrared spectrometer using silicon photonics. ACS Photonics 2022, 9, 2367–2377. DOI: 10.1021/acsphotonics.2c00381.
  • Koh, K. H.; Kobayashi, T.; Lee, C. Investigation of piezoelectric driven MEMS mirrors based on single and double S-shaped PZT actuator for 2-D scanning applications. Sens. Actuators, A. 2012, 184, 149–159. DOI: 10.1016/j.sna.2012.06.018.
  • Koh, K. H.; Kobayashi, T.; Xie, J.; Yu, A.; Lee, C. Novel piezoelectric actuation mechanism for a gimbal-less mirror in 2D raster scanning applications. J. Micromech. Microeng. 2011, 21, 075001. DOI: 10.1088/0960-1317/21/7/075001.
  • Koh, K. H.; Kobayashi, T.; Hsiao, F. L.; Lee, C. Characterization of piezoelectric PZT beam actuators for driving 2D scanning micromirrors. Sens. Actuators, A. 2010, 162, 336–347. DOI: 10.1016/j.sna.2010.04.021.
  • Koh, K. H.; Kobayashi, T.; Lee, C. Low-voltage driven MEMS VOA using torsional attenuation mechanism based on piezoelectric beam actuators. IEEE Photon. Technol. Lett. 2010, 22, 1355–1357. DOI: 10.1109/LPT.2010.2056679.
  • Koh, K. H.; Lee, C.; Kobayashi, T. A piezoelectric-driven three-dimensional MEMS VOA using attenuation mechanism with combination of rotational and translational effects. J. Microelectromech. Syst. 2010, 19, 1370–1379. DOI: 10.1109/JMEMS.2010.2076785.
  • Ren, Z.; Dong, B.; Qiao, Q.; Liu, X.; Liu, J.; Zhou, G.; Lee, C. Subwavelength on‐chip light focusing with bigradient all‐dielectric metamaterials for dense photonic integration. InfoMat 2021, 4, 1–13. DOI: 10.1002/inf2.12264.
  • Dong, B.; Zhang, Z.; Shi, Q.; Wei, J.; Ma, Y.; Xiao, Z.; Lee, C. Biometrics-protected optical communication enabled by deep-learning enhanced triboelectric/photonic synergistic interface. Sci. Adv. 2022, 8, eabl9874. DOI: 10.1126/sciadv.abl9874
  • Liu, X.; Liu, W.; Ren, Z.; Ma, Y.; Dong, B.; Zhou, G.; Lee, C. Progress of optomechanical micro/nano sensors: A review. Int. J. Optomechatronics. 2021, 15, 120–159. DOI: 10.1080/15599612.2021.1986612.
  • Qiao, Q.; Sun, H.; Liu, X.; Dong, B.; Xia, J.; Lee, C.; Zhou, G. Suspended silicon waveguide with sub-wavelength grating cladding for optical MEMS in mid-infrared. Micromachines 2021, 12, 1311. DOI: 10.3390/mi12111311
  • Dong, B.; Yang, Y.; Shi, Q.; Xu, S.; Sun, Z.; Zhu, S.; Zhang, Z.; Kwong, D. L.; Zhou, G.; Ang, K. W.; Lee, C. Wearable triboelectric-human-machine interface (THMI) using robust nanophotonic readout. ACS Nano. 2020, 14, 8915–8930. DOI: 10.1021/acsnano.0c03728.
  • Dong, B.; Shi, Q.; He, T.; Zhu, S.; Zhang, Z.; Sun, Z.; Ma, Y.; Kwong, D. L.; Lee, C. Wearable triboelectric/aluminum nitride nano-energy-nano-system with self-sustainable photonic modulation and continuous force sensing. Adv. Sci. 2020, 7, 1903636.
  • Ma, Y.; Dong, B.; Lee, C. Progress of infrared guided-wave nanophotonic sensors and devices. Nano Converg. 2020, 7, 12. DOI: 10.1186/s40580-020-00222-x.
  • Ren, Z.; Chang, Y.; Ma, Y.; Shih, K.; Dong, B.; Lee, C. Leveraging of MEMS technologies for optical metamaterials applications. Adv. Opt. Mater. 2019, 8, 1900653. DOI: 10.1002/adom.201900653.
  • Dong, B.; Luo, X.; Zhu, S.; Hu, T.; Li, M.; Hasan, D.; Zhang, L.; Chua, S. J.; Wei, J.; Chang, Y.; Ma, Y.; Vachon, P.; Lo, G. Q.; Ang, K. W.; Kwong, D. L.; Lee, C. Thermal annealing study of the mid-infrared aluminum nitride on insulator (AlNOI) photonics platform. Opt. Express. 2019, 27, 19815–19826. DOI: 10.1364/OE.27.019815.
  • Mäki, J. M.; Makkonen, I.; Tuomisto, F.; Karjalainen, A.; Suihkonen, S.; Räisänen, J.; Chemekova, T. Y.; Makarov, Y. N. Identification of theVAl-ONdefect complex in AlN single crystals. Phys. Rev. B. 2011, 84, 081204. DOI: 10.1103/PhysRevB.84.081204.
  • Uedono, A.; Shojiki, K.; Uesugi, K.; Chichibu, S. F.; Ishibashi, S.; Dickmann, M.; Egger, W.; Hugenschmidt, C.; Miyake, H. Annealing behaviors of vacancy-type defects in AlN deposited by radio-frequency sputtering and metalorganic vapor phase epitaxy studied using monoenergetic positron beams. J. Appl. Phys. 2020, 128, 085704. DOI: 10.1063/5.0015225.
  • Liu, Y.; Jiang, L.; Wang, G.; Zuo, S.; Wang, W.; Chen, X. Adjustable nitrogen-vacancy induced magnetism in AlN. Applied Phys. Lett. 2012, 100, 122401. DOI: 10.1063/1.3696023.
  • Xu, R. L.; Muñoz Rojo, M.; Islam, S. M.; Sood, A.; Vareskic, B.; Katre, A.; Mingo, N.; Goodson, K. E.; Xing, H. G.; Jena, D.; Pop, E. Thermal conductivity of crystalline AlN and the influence of atomic-scale defects. J. Appl. Phys. 2019, 126, DOI: 10.1063/1.5097172.
  • Sharma, N.; Rath, M.; Ilango, S.; Ravindran, T. R.; Ramachandra Rao, M. S.; Dash, S.; Tyagi, A. K. Charged vacancy induced enhanced piezoelectric response of reactive assistive IBSD grown AlN thin films. J. Phys. D: Appl. Phys. 2017, 50, 015601. DOI: 10.1088/1361-6463/50/1/015601.
  • Sedhain, A.; Lin, J. Y.; Jiang, H. X. Nature of optical transitions involving cation vacancies and complexes in AlN and AlGaN. Appl. Phys. Lett. 2012, 100, 221107. DOI: 10.1063/1.4723693.
  • Uedono, A.; I, S.; Keller, S.; Moe, C.; Cantu, P.; Katona, T. M.; Kamber, D. S.; Wu, Y.; Letts, E.; Newman, S. A.; Nakamura, S.; Speck, J. S.; Mishra, U. K.; DenBaars, S. P.; Onuma, T.; Chichibu, S. F. Vacancy-oxygen complexes and their optical properties in AlN epitaxial films studied by positron annihilation. J. Appl. Phys. 2009, 105, 054501. DOI: 10.1063/1.3079333.
  • Wu, R. Q.; Peng, G. W.; Liu, L.; Feng, Y. P.; Huang, Z. G.; Wu, Q. Y. Ferromagnetism in Mg-doped AlN from ab Initio Study. Appl. Phys. Lett. 2006, 89, 142501. DOI: 10.1063/1.2358818.
  • Kresse, G.; F, J. Efficiency of ab-Initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. DOI: 10.1016/0927-0256(96)00008-0.
  • Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab Initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter. 1996, 54, 11169–11186. DOI: 10.1103/physrevb.54.11169.
  • Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B. 1994, 50, 17953–17979.
  • Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999, 59, 1758–1775. DOI: 10.1103/PhysRevB.59.1758.
  • Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. DOI: 10.1103/PhysRevLett.77.3865.
  • Pack, J. D.; Monkhorst, H. J. “Special points for brillouin-zone integrations"—a reply. Phys. Rev. B. 1977, 16, 1748–1749. DOI: 10.1103/PhysRevB.16.1748.
  • Baroni, S.; Gironcoli, S. D.; Corso, A. D.; Giannozzi, P. Phonons and related properties of extended systems from density-functional perturbation theory. Rev. Mod. Phys. 2001, 73, 515–562. DOI: 10.1103/RevModPhys.73.515.
  • Stampfl, C.; Van de Walle, C. G. Density-functional calculations for III-V nitrides using the local-density approximation and the generalized gradient approximation. Phys. Rev. B. 1999, 59, 5521–5535. DOI: 10.1103/PhysRevB.59.5521.
  • Ye, H. G.; Chen, G. D.; Zhu, Y. Z.; Lv, H. M. First principle study of nitrogen vacancy in aluminium nitride. Chin. Phys. 2007, 16, 3803.
  • Stampfl, C.; Van de Walle, C. G. Theoretical investigation of native defects, impurities, and complexes in aluminum nitride. Phys. Rev. B. 2002, 65, 155212. DOI: 10.1103/PhysRevB.65.155212.
  • Van de Walle, C. G.; Neugebauer, J. First-principles calculations for defects and impurities: Applications to III-nitrides. J. Appl. Phys. 2004, 95, 3851–3879. DOI: 10.1063/1.1682673.
  • Laaksonen, K.; Ganchenkova, M. G.; Nieminen, R. M. Vacancies in Wurtzite GaN and AlN. J. Phys. Condens. Matter. 2009, 21, 015803. DOI: 10.1088/0953-8984/21/1/015803.
  • Yan, Q.; Janotti, A.; Scheffler, M.; Van de Walle, C. G. Origins of optical absorption and emission lines in AlN. Appl. Phys. Lett. 2014, 105, 111104. DOI: 10.1063/1.4895786.
  • Zhang, Y.; Liu, W.; Niu, H. Native defect properties and p-type doping efficiency in group-IIA doped wurtzite AlN. Phys. Rev. B. 2008, 77, 035201. DOI: 10.1103/PhysRevB.77.035201.
  • Lv, Q.; Qiu, J.; Wen, Q.; Li, D.; Zhou, Y.; Lu, G. Large in-plane and out-of-plane piezoelectricity in 2D γ-LiMX2 (M = Al, Ga and in; X = S, Se and Te) monolayers. Mater. Sci. Semicond. Process. 2023, 154, 107222. DOI: 10.1016/j.mssp.2022.107222.
  • Noor, A. A. M.; O, Z. O.; Nolan, M. Ferroelectricity and large piezoelectric response of AlN/ScN superlattice. ACS Appl. Mater. Interfaces. 2019, 11, 20482–20490. DOI: 10.1021/acsami.8b22602.
  • Mouhat, F.; C, F. X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B. 2014, 90, 224104. DOI: 10.1103/PhysRevB.90.224104.
  • Ravindran, P.; Fast, L.; Korzhavyi, P. A.; Johansson, B.; Wills, J.; Eriksson, O. Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2. J. Appl. Phys. 1998, 84, 4891–4904. DOI: 10.1063/1.368733.
  • Dimple, D.; Jena, N.; Rawat, A.; Ahammed, R.; Mohanta, M. K.; De Sarkar, A. Emergence of high piezoelectricity along with robust electron mobility in janus structures in semiconducting group IVB dichalcogenide monolayers. J. Mater. Chem. A. 2018, 6, 24885–24898. DOI: 10.1039/C8TA08781D.
  • Liu, H.; Zeng, F.; Tang, G.; Pan, F. Enhancement of piezoelectric response of diluted Ta doped AlN. Appl. Surf. Sci. 2013, 270, 225–230. DOI: 10.1016/j.apsusc.2013.01.005.
  • Akiyama, M.; Kamohara, T.; Kano, K.; Teshigahara, A.; Takeuchi, Y.; Kawahara, N. Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering. Adv. Mater. 2009, 21, 593–596. DOI: 10.1002/adma.200802611.
  • Rudresh, J.; Srihari, N. V.; Kowshik, S.; Sandeep; Nagaraja, K. K. Investigation of elastic properties of Sc doped AlN: A first principles and experimental approach. Eng. Proceed. 2023, 59, 86.
  • Iwazaki, Y.; Yokoyama, T.; Nishihara, T.; Ueda, M. Highly enhanced piezoelectric property of co-doped AlN. Appl. Phys. Express. 2015, 8, 061501. DOI: 10.7567/APEX.8.061501.
  • Luo, J. T.; Fan, B.; Zeng, F.; Pan, F. Influence of Cr-doping on microstructure and piezoelectric response of AlN films. J. Phys. D: Appl. Phys. 2009, 42, 235406. DOI: 10.1088/0022-3727/42/23/235406.