777
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Bio-inspired tunable optics and photonics: bridging the gap between nature and technology

, , , &

References

  • Cai, W.; Chettiar, U. K.; Kildishev, A. V.; Shalaev, V. M. Optical cloaking with metamaterials. Nature Photon 2007, 1, 224–227. DOI: 10.1038/nphoton.2007.28.
  • Liu, Z.; Durant, S.; Lee, H.; Pikus, Y.; Fang, N.; Xiong, Y.; Sun, C.; Zhang, X. Far-field optical superlens. Nano Lett. 2007, 7, 403–408. DOI: 10.1021/nl062635n.
  • Dhama, R.; Yan, B.; Palego, C.; Wang, Z. Super-resolution imaging by dielectric superlenses: TiO2 metamaterial superlens versus BaTiO3 superlens. Photonics 2021, 8, 222. inDOI: 10.3390/photonics8060222.
  • Wen, Y.; Yu, H.; Zhao, W.; Li, P.; Wang, F.; Ge, Z.; Wang, X.; Liu, L.; Li, W. J. Scanning super-resolution imaging in enclosed environment by laser tweezer controlled superlens. Biophys. J. 2020, 119, 2451–2460. DOI: 10.1016/j.bpj.2020.10.032.
  • Huang, T.-J.; Yin, L.-Z.; Zhao, J.; Du, C.-H.; Liu, P.-K. Amplifying evanescent waves by dispersion-induced plasmons: defying the materials limitation of the superlens. ACS Photonics 2020, 7, 2173–2181. DOI: 10.1021/acsphotonics.0c00687.
  • Bourzac, K. Quantum dots go on display. Nature 2013, 493, 283–283. DOI: 10.1038/493283a.
  • Choi, M.; Bae, S.-R.; Hu, L.; Hoang, A. T.; Kim, S. Y.; Ahn, J.-H. Full-color active-matrix organic light-emitting diode display on human skin based on a large-area MoS2 backplane. Sci. Adv. 2020, 6, eabb5898. DOI: 10.1126/sciadv.abb5898.
  • Gao, Y.; Huang, C.; Hao, C.; Sun, S.; Zhang, L.; Zhang, C.; Duan, Z.; Wang, K.; Jin, Z.; Zhang, N.; et al. Lead halide perovskite nanostructures for dynamic color display. ACS Nano 2018, 12, 8847–8854. DOI: 10.1021/acsnano.8b02425.
  • Wu, X-g.; Ji, H.; Yan, X.; Zhong, H. Industry outlook of perovskite quantum dots for display applications. Nat. Nanotechnol. 2022, 17, 813–816. DOI: 10.1038/s41565-022-01163-8.
  • Sun, C.; Alonso, J. A.; Bian, J. Recent advances in perovskite‐type oxides for energy conversion and storage applications. Adv. Energy Mater. 2021, 11, 2000459. DOI: 10.1002/aenm.202000459.
  • Zhang, L.; Mei, L.; Wang, K.; Lv, Y.; Zhang, S.; Lian, Y.; Liu, X.; Ma, Z.; Xiao, G.; Liu, Q.; et al. Advances in the application of perovskite materials. Nanomicro. Lett. 2023, 15, 177. DOI: 10.1007/s40820-023-01140-3.
  • Wang, M.; Wang, W.; Ma, B.; Shen, W.; Liu, L.; Cao, K.; Chen, S.; Huang, W. Lead-free perovskite materials for solar cells. Nano-Micro Lett. 2021, 13, 36. DOI: 10.1007/s40820-020-00578-z.
  • Zhang, L.; Miao, J.; Li, J.; Li, Q. Halide perovskite materials for energy storage applications. Adv. Funct. Mater. 2020, 30, 2003653.
  • Olabi, A. G.; Abdelkareem, M. A.; Wilberforce, T.; Sayed, E. T. Application of graphene in energy storage device–a review. Renew. Sustain. Energy Rev. 2021, 135, 110026. DOI: 10.1016/j.rser.2020.110026.
  • Kapilashrami, M.; Zhang, Y.; Liu, Y.-S.; Hagfeldt, A.; Guo, J. Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. Chem. Rev. 2014, 114, 9662–9707. DOI: 10.1021/cr5000893.
  • Bhatia, B.; Leroy, A.; Shen, Y.; Zhao, L.; Gianello, M.; Li, D.; Gu, T.; Hu, J.; Soljačić, M.; Wang, E. N. Passive directional sub-ambient daytime radiative cooling. Nat. Commun. 2018, 9, 5001. DOI: 10.1038/s41467-018-07293-9.
  • Heo, S.-Y.; Lee, G. J.; Kim, D. H.; Kim, Y. J.; Ishii, S.; Kim, M. S.; Seok, T. J.; Lee, B. J.; Lee, H.; Song, Y. M. A janus emitter for passive heat release from enclosures. Sci. Adv. 2020, 6, eabb1906. DOI: 10.1126/sciadv.abb1906.
  • Sayed, H.; Aly, A. H.; Krauss, T. F. Photonic crystals umbrella for thermal desalination: simulation study. Sci. Rep. 2022, 12, 21499. DOI: 10.1038/s41598-022-24336-w.
  • Mandal, J.; Yang, Y.; Yu, N.; Raman, A. P. Paints as a scalable and effective radiative cooling technology for buildings. Joule 2020, 4, 1350–1356. DOI: 10.1016/j.joule.2020.04.010.
  • Bae, M.; Kim, D. H.; Kim, S.-K.; Song, Y. M. Transparent energy-saving windows based on broadband directional thermal emission. Nanophotonics 2024, 13, 749–761. DOI: 10.1515/nanoph-2023-0580.
  • Kim, D. H.; Lee, G. J.; Heo, S.-Y.; Son, S.; Kang, K. M.; Lee, H.; Song, Y. M. Ultra-thin and near-unity selective emitter for efficient cooling. Opt. Express 2021, 29, 31364–31375. DOI: 10.1364/OE.438662.
  • Kim, H.; Yoo, Y. J.; Yun, J. H.; Heo, S. Y.; Song, Y. M.; Yeo, W. H. Outdoor worker stress monitoring electronics with nanofabric radiative cooler‐based thermal management. Adv. Healthc. Mater. 2023, 12, e2301104. DOI: 10.1002/adhm.202301104.
  • Tang, K.; Dong, K.; Li, J.; Gordon, M. P.; Reichertz, F. G.; Kim, H.; Rho, Y.; Wang, Q.; Lin, C.-Y.; Grigoropoulos, C. P.; et al. Temperature-adaptive radiative coating for all-season household thermal regulation. Science 2021, 374, 1504–1509. DOI: 10.1126/science.abf7136.
  • Lee, G. J.; Kim, Y. J.; Kim, H. M.; Yoo, Y. J.; Song, Y. M. Colored, daytime radiative coolers with thin‐film resonators for aesthetic purposes. Adv. Opt. Mater. 2018, 6, 1800707. DOI: 10.1002/adom.201800707.
  • Zhang, Q.; Lv, Y.; Wang, Y.; Yu, S.; Li, C.; Ma, R.; Chen, Y. Temperature-dependent dual-mode thermal management device with net zero energy for year-round energy saving. Nat Commun 2022, 13, 4874. DOI: 10.1038/s41467-022-32528-1.
  • Kim, D. H.; Lee, G. J.; Heo, S.-Y.; Kang, I.-S.; Song, Y. M. Thermostat property of Janus emitter in enclosures. Sol. Energy Mater. Sol. Cells 2021, 230, 111173. DOI: 10.1016/j.solmat.2021.111173.
  • Kim, D. H.; Heo, S.-Y.; Oh, Y.-W.; Jung, S.; Kang, M. H.; Kang, I.-S.; Lee, G. J.; Song, Y. M. Polarization-mediated multi-state infrared system for fine temperature regulation. APL Phontonics 2023, 8, 030801.
  • Yu, X.; Chan, J.; Chen, C. Review of Radiative Cooling Materials: Performance Evaluation and Design Approaches. Nano Energy 2021, 88, 106259. DOI: 10.1016/j.nanoen.2021.106259.
  • Han, W. B.; Kang, H.; Heo, S.-Y.; Ryu, Y.; Kim, G.; Ko, G.-J.; Shin, J.-W.; Jang, T.-M.; Han, S.; Lim, J. H.; et al. Stretchable and biodegradable composite films for disposable, antibacterial, radiative cooling system. Chem. Eng. J. 2024, 483, 149388. DOI: 10.1016/j.cej.2024.149388.
  • Yun, J.; Yoo, Y. J.; Kim, H. R.; Song, Y. M. Recent progress in thermal management for flexible/wearable devices. Soft Sci. 2023, 3, 12. DOI: 10.20517/ss.2023.04.
  • Heo, S.-Y.; Lee, G. J.; Song, Y. M. Heat-shedding with photonic structures: radiative cooling and its potential. J. Mater. Chem. C 2022, 10, 9915–9937. DOI: 10.1039/D2TC00318J.
  • Yuan, X.; Ji, M.; Wu, J.; Brady, D. J.; Dai, Q.; Fang, L. A modular hierarchical array camera. Light-Sci. Appl. 2021, 10, 37.
  • Kim, M. S.; Yeo, J.-E.; Choi, H.; Chang, S.; Kim, D.-H.; Song, Y. M. Evolution of natural eyes and biomimetic imaging devices for effective image acquisition. J. Mater. Chem. C 2023, 11, 12083–12104. DOI: 10.1039/D3TC01883K.
  • Kim, D. H.; Lee, G. J.; Song, Y. M. Compact zooming optical systems for panoramic and telescopic applications based on curved image sensor. J. Opt. Microsyst. 2022, 2, 031204–031204. DOI: 10.1117/1.JOM.2.3.031204.
  • Kim, H. M.; Yoo, Y. J.; Lee, J. M.; Song, Y. M. A wide field-of-view light-field camera with adjustable multiplicity for practical applications. Sensors 2022, 22, 3455. DOI: 10.3390/s22093455.
  • Kim, H. M.; Kim, M. S.; Chang, S.; Jeong, J.; Jeon, H.-G.; Song, Y. M. Vari-focal light field camera for extended depth of field. Micromachines 2021, 12, 1453. DOI: 10.3390/mi12121453.
  • Kim, M. S.; Kim, M. S.; Lee, G. J.; Sunwoo, S. H.; Chang, S.; Song, Y. M.; Kim, D. H. Bio‐inspired artificial vision and neuromorphic image processing devices. Adv. Mater. Technol. 2022, 7, 2100144.
  • Lee, J. H.; Chang, S.; Kim, M. S.; Kim, Y. J.; Kim, H. M.; Song, Y. M. High-identical numerical aperture, multifocal microlens array through single-step multi-sized hole patterning photolithography. Micromachines 2020, 11, 1068. DOI: 10.3390/mi11121068.
  • Yoo, Y. J.; Kim, Y. J.; Kim, S.-Y.; Lee, J. H.; Kim, K.; Ko, J. H.; Lee, J. W.; Lee, B. H.; Song, Y. M. Mechanically robust antireflective moth-eye structures with a tailored coating of dielectric materials. Opt. Mater. Express 2019, 9, 4178–4186. DOI: 10.1364/OME.9.004178.
  • Song, Y. M.; Jeong, Y.; Yeo, C. I.; Lee, Y. T. Enhanced power generation in concentrated photovoltaics using broadband antireflective coverglasses with moth eye structures. Opt. Express 2012, 20, A916–A923.
  • Jang, H. J.; Kim, Y. J.; Yoo, Y. J.; Lee, G. J.; Kim, M. S.; Chang, K. S.; Song, Y. M. Double-sided anti-reflection nanostructures on optical convex lenses for imaging applications. Coatings 2019, 9, 404. DOI: 10.3390/coatings9060404.
  • Fan, S.; Li, W. Photonics and thermodynamics concepts in radiative cooling. Nat. Photon 2022, 16, 182–190. DOI: 10.1038/s41566-021-00921-9.
  • Ko, J. H.; Kim, S. H.; Kim, M. S.; Heo, S.-Y.; Yoo, Y. J.; Kim, Y. J.; Lee, H.; Song, Y. M. Lithography-free, large-area spatially segmented disordered structure for light harvesting in photovoltaic modules. ACS Appl. Mater. Interfaces 2022, 14, 44419–44428. DOI: 10.1021/acsami.2c12131.
  • Lee, W.; Yoo, Y. J.; Park, J.; Ko, J. H.; Kim, Y. J.; Yun, H.; Kim, D. H.; Song, Y. M.; Kim, D.-H. Perovskite microcells fabricated using swelling-induced crack propagation for colored solar windows. Nat. Commun. 2022, 13, 1946.
  • Zhu, H.; Li, Q.; Zheng, C.; Hong, Y.; Xu, Z.; Wang, H.; Shen, W.; Kaur, S.; Ghosh, P.; Qiu, M. High-temperature infrared camouflage with efficient thermal management. Light-Sci. Appl. 2020, 9, 60.
  • Huang, L.; Li, H.; Li, Z.; Zhang, W.; Ma, C.; Zhang, C.; Wei, Y.; Zhou, L.; Li, X.; Cheng, Z.; et al. Multiband camouflage design with thermal management. Photon. Res. 2023, 11, 839–851. DOI: 10.1364/PRJ.484448.
  • Zhu, H.; Li, Q.; Tao, C.; Hong, Y.; Xu, Z.; Shen, W.; Kaur, S.; Ghosh, P.; Qiu, M. Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nat. Commun. 2021, 12, 1805. DOI: 10.1038/s41467-021-22051-0.
  • Han, F.; Wang, T.; Liu, G.; Liu, H.; Xie, X.; Wei, Z.; Li, J.; Jiang, C.; He, Y.; Xu, F. Materials with tunable optical properties for wearable epidermal sensing in health monitoring. Adv. Mater. 2022, 34, e2109055. DOI: 10.1002/adma.202109055.
  • Zhu, C.; Hobbs, M. J.; Grainger, M. P.; Willmott, J. R. Design and realization of a wide field of view infrared scanning system with an integrated micro-electromechanical system mirror. Appl. Opt. 2018, 57, 10449–10457. DOI: 10.1364/AO.57.010449.
  • Balestrieri, E.; Daponte, P.; De Vito, L.; Lamonaca, F. Sensors and measurements for unmanned systems: An overview. Sensors 2021, 21, 1518. DOI: 10.3390/s21041518.
  • Dey, N. Uneven illumination correction of digital images: A survey of the state-of-the-art. Optik 2019, 183, 483–495. DOI: 10.1016/j.ijleo.2019.02.118.
  • Wang, J.; Wang, X.; Zhang, P.; Xie, S.; Fu, S.; Li, Y.; Han, H. Correction of uneven illumination in color microscopic image based on fully convolutional network. Opt. Express 2021, 29, 28503–28520. DOI: 10.1364/OE.433064.
  • Dorrah, A. H.; Capasso, F. Tunable structured light with flat optics. Science 2022, 376, eabi6860. DOI: 10.1126/science.abi6860.
  • Fan, Q.; Xu, W.; Hu, X.; Zhu, W.; Yue, T.; Zhang, C.; Yan, F.; Chen, L.; Lezec, H. J.; Lu, Y.; et al. Trilobite-inspired neural nanophotonic light-field camera with extreme depth-of-field. Nat. Commun. 2022, 13, 2130. DOI: 10.1038/s41467-022-29568-y.
  • Ko, J. H.; Kim, D. H.; Hong, S.-H.; Kim, S.-K.; Song, Y. M. Polarization-driven thermal emission regulator based on self-aligned GST nanocolumns. iScience 2023, 26, 105780. DOI: 10.1016/j.isci.2022.105780.
  • Ono, M.; Chen, K.; Li, W.; Fan, S. Self-adaptive radiative cooling based on phase change materials. Opt. Express 2018, 26, A777–A787. DOI: 10.1364/OE.26.00A777.
  • Kim, M.; Lee, D.; Yang, Y.; Rho, J. Switchable diurnal radiative cooling by doped VO2. OEA 2021, 4, 200006–200007. DOI: 10.29026/oea.2021.200006.
  • Wang, X.; Cao, Y.; Zhang, Y.; Yan, L.; Li, Y. Fabrication of VO2-based multilayer structure with variable emittance. Appl. Surf. Sci. 2015, 344, 230–235. DOI: 10.1016/j.apsusc.2015.03.116.
  • Long, L.; Taylor, S.; Ying, X.; Wang, L. Thermally-switchable spectrally-selective infrared metamaterial absorber/emitter by tuning magnetic polariton with a phase-change VO2 layer. Mater. Today Energy 2019, 13, 214–220. DOI: 10.1016/j.mtener.2019.05.017.
  • Ko, J. H.; Seo, D. H.; Jeong, H. H.; Kim, S.; Song, Y. M. Sub‐1‐volt electrically programmable optical modulator based on active Tamm plasmon. Adv. Mater. 2024, e2310556. DOI: 10.1002/adma.202310556.
  • Zhou, Y.; Feng, H.; Li, X.; Sun, P.; Su, L.; Nie, S.; Ran, L.; Gao, Y. Tunable mid-infrared selective emitter with thermal management for infrared camouflage. Plasmonics 2023, 18, 2465–2473. DOI: 10.1007/s11468-023-01955-1.
  • Xiong, Y.; Wang, Y.; Feng, C.; Tian, Y.; Gao, L.; Wang, J.-L.; Zhuo, Z.; Zhao, X. Electrically tunable phase-change metasurface for dynamic infrared thermal camouflage. Photonics Res. 2024, 12, 292–300.
  • Choi, C.; Lee, G. J.; Chang, S.; Song, Y. M.; Kim, D.-H. Nanomaterial-based artificial vision systems: From bioinspired electronic eyes to in-sensor processing devices. ACS Nano 2024, 18, 1241–1256. DOI: 10.1021/acsnano.3c10181.
  • Ko, J. H.; Yeo, J.-E.; Jeong, H. E.; Yoo, D. E.; Lee, D. W.; Oh, Y.-W.; Jung, S.; Kang, I.-S.; Jeong, H.-H.; Song, Y. M. Electrochromic nanopixels with optical duality for optical encryption applications. Nanophotonics 2024. DOI: 10.1515/nanoph-2023-0737.
  • Prabhathan, P.; Sreekanth, K. V.; Teng, J.; Ko, J. H.; Yoo, Y. J.; Jeong, H.-H.; Lee, Y.; Zhang, S.; Cao, T.; Popescu, C.-C.; et al. Roadmap for phase change materials in photonics and beyond. iScience 2023, 26, 107946. DOI: 10.1016/j.isci.2023.107946.
  • Kim, G.; Kim, D.; Ko, S.; Han, J.-H.; Kim, J.; Ko, J. H.; Song, Y. M.; Jeong, H.-H. Programmable directional color dynamics using plasmonics. Microsyst. Nanoeng. 2024, 10, 22. DOI: 10.1038/s41378-023-00635-8.
  • Kong, D.-J.; Kang, C.-M.; Lee, J.-Y.; Kim, J.; Lee, D.-S. Color tunable monolithic InGaN/GaN LED having a multi-junction structure. Opt. Express 2016, 24, A667–A673. DOI: 10.1364/OE.24.00A667.
  • Kong, D.-J.; Kang, C.-M.; Lee, J.-Y.; Lee, D.-S. 2015 Blue to green tunable GaN-based LEDs having a dual-junction structure. in Solid-State and Organic Lighting (Optica Publishing Group), DM2D. 1. DOI: 10.1364/SOLED.2015.DM2D.1.
  • Jung, I.; Xiao, J.; Malyarchuk, V.; Lu, C.; Li, M.; Liu, Z.; Yoon, J.; Huang, Y.; Rogers, J. A. Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability. Proc. Natl. Acad. Sci. U S A 2011, 108, 1788–1793. DOI: 10.1073/pnas.1015440108.
  • Song, J.-K.; Kim, J.; Yoon, J.; Koo, J. H.; Jung, H.; Kang, K.; Sunwoo, S.-H.; Yoo, S.; Chang, H.; Jo, J.; et al. Stretchable colour-sensitive quantum dot nanocomposites for shape-tunable multiplexed phototransistor arrays. Nat. Nanotechnol. 2022, 17, 849–856. DOI: 10.1038/s41565-022-01160-x.
  • Pandiyan, V. P.; Maloney-Bertelli, A.; Kuchenbecker, J. A.; Boyle, K. C.; Ling, T.; Chen, Z. C.; Park, B. H.; Roorda, A.; Palanker, D.; Sabesan, R. The optoretinogram reveals the primary steps of phototransduction in the living human eye. Sci. Adv. 2020, 6, eabc1124. DOI: 10.1126/sciadv.abc1124.
  • Roth, L. S.; Lundström, L.; Kelber, A.; Kröger, R. H.; Unsbo, P. The pupils and optical systems of gecko eyes. J. Vis. 2009, 9, 27.1–2711. DOI: 10.1167/9.3.27.
  • Bu, X.; Bai, H. Recent progress of bio-inspired camouflage materials: From visible to infrared range. Chem. Res. Chin. Univ. 2023, 39, 19–29. DOI: 10.1007/s40242-022-2170-2.
  • Wang, K.; Pierscionek, B. K. Biomechanics of the human lens and accommodative system: Functional relevance to physiological states. Prog. Retin. Eye Res. 2019, 71, 114–131. DOI: 10.1016/j.preteyeres.2018.11.004.
  • Levy, B.; Sivak, J. Mechanisms of accommodation in the bird eye. J. Comp. Physiol. 1980, 137, 267–272. DOI: 10.1007/BF00657122.
  • Land, M. F. The evolution of lenses. Ophthalmic Physiol. Opt. 2012, 32, 449–460. DOI: 10.1111/j.1475-1313.2012.00941.x.
  • Schaeffel, F.; Murphy, C. J.; Howland, H. C. Accommodation in the cuttlefish (Sepia officinalis). J. Exp. Biol. 1999, 202, 3127–3134. DOI: 10.1242/jeb.202.22.3127.
  • Altaqui, A.; Schrickx, H.; Gyurek, S.; Sen, P.; Escuti, M.; O’Connor, B. T.; Kudenov, M. Cephalopod-inspired snapshot multispectral sensor based on geometric phase lens and stacked organic photodetectors. Opt. Eng. 2022, 61, 077104–077104. DOI: 10.1117/1.OE.61.7.077104.
  • Phan, L.; Kautz, R.; Leung, E. M.; Naughton, K. L.; Van Dyke, Y.; Gorodetsky, A. A. Dynamic materials inspired by cephalopods. Chem. Mater. 2016, 28, 6804–6816. DOI: 10.1021/acs.chemmater.6b01532.
  • Teyssier, J.; Saenko, S. V.; Van Der Marel, D.; Milinkovitch, M. C. Photonic Crystals cause active colour change in chameleons. Nat. Commun. 2015, 6, 6368. DOI: 10.1038/ncomms7368.
  • Mouchet, S. R.; Lobet, M.; Kolaric, B.; Kaczmarek, A. M.; Van Deun, R.; Vukusic, P.; Deparis, O.; Van Hooijdonk, E. Controlled fluorescence in a beetle’s photonic structure and its sensitivity to environmentally induced changes. Proc. R. Soc. B 2016, 283, 20162334. DOI: 10.1098/rspb.2016.2334.
  • Zang, J.; Neuhauss, S. C. Biochemistry and physiology of zebrafish photoreceptors. Pflügers Archiv-European Journal of Physiology 2021, 12,1–17.
  • Angée, C.; Nedelec, B.; Erjavec, E.; Rozet, J.-M.; Fares Taie, L. Congenital microcoria: Clinical features and molecular genetics. Genes 2021, 12, 624. DOI: 10.3390/genes12050624.
  • Narendra, A.; Alkaladi, A.; Raderschall, C. A.; Robson, S. K.; Ribi, W. A. Compound eye adaptations for diurnal and nocturnal lifestyle in the intertidal ant, Polyrhachis Sokolova. PLOS One 2013, 8, e76015. DOI: 10.1371/journal.pone.0076015.
  • Land, M. F.; Nilsson, D.-E. Animal Eyes. OUP Oxford: Oxford, 2012.
  • Heath, A. R.; Hindman, H. M. The role of cyclic AMP in the control of elasmobranch ocular tapetum lucidum pigment granule migration. Vision Res. 1988, 28, 1277–1285. DOI: 10.1016/0042-6989(88)90058-2.
  • Liu, H.; Wang, L.; Jiang, W.; Li, R.; Yin, L.; Shi, Y.; Chen, B. Bio-inspired eyes with eyeball-shaped lenses actuated by electro-hydrodynamic forces. RSC Adv. 2016, 6, 23653–23657. DOI: 10.1039/C5RA22845J.
  • Lovegrove, W.; Martin, F.; Bowling, A.; Blackwood, M.; Badcock, D.; Paxton, S. Contrast sensitivity functions and specific reading disability. Neuropsychologia 1982, 20, 309–315. DOI: 10.1016/0028-3932(82)90105-1.
  • Mäthger, L. M.; Hanlon, R. T.; Håkansson, J.; Nilsson, D.-E. The W-shaped pupil in cuttlefish (Sepia officinalis): Functions for improving horizontal vision. Vision Res. 2013, 83, 19–24. DOI: 10.1016/j.visres.2013.02.016.
  • Kim, M.; Chang, S.; Kim, M.; Yeo, J.-E.; Kim, M. S.; Lee, G. J.; Kim, D.-H.; Song, Y. M. Cuttlefish eye–inspired artificial vision for high-quality imaging under uneven illumination conditions. Sci. Robot 2023, 8, eade4698. DOI: 10.1126/scirobotics.ade4698.
  • Ivanoff, A.; Waterman, T. H. Factors, mainly depth and wavelength, affecting the degree of underwater light polarization. 1958.
  • González-Martín-Moro, J.; Gómez-Sanz, F.; Sales-Sanz, A.; Huguet-Baudin, E.; Murube-del-Castillo, J. Pupil shape in the Animal Kingdom: From the pseudopupil to the vertical pupil. Archivos de la Sociedad Española de Oftalmología 2014, 89, 484–494. DOI: 10.1016/j.oftale.2014.11.009.
  • Daly, I. M.; How, M. J.; Partridge, J. C.; Temple, S. E.; Marshall, N. J.; Cronin, T. W.; Roberts, N. W. Dynamic polarization vision in mantis shrimps. Nat. Commun. 2016, 7, 12140. DOI: 10.1038/ncomms12140.
  • Banks, M. S.; Sprague, W. W.; Schmoll, J.; Parnell, J. A.; Love, G. D. Why do animal eyes have pupils of different shapes? Sci. Adv. 2015, 1, e1500391. DOI: 10.1126/sciadv.1500391.
  • Cao, J.-J.; Hou, Z.-S.; Tian, Z.-N.; Hua, J.-G.; Zhang, Y.-L.; Chen, Q.-D. Bioinspired zoom compound eyes enable variable-focus imaging. ACS Appl. Mater. Interfaces 2020, 12, 10107–10117. DOI: 10.1021/acsami.9b21008.
  • Zhou, P.; Yu, H.; Zhong, Y.; Zou, W.; Wang, Z.; Liu, L. Fabrication of waterproof artificial compound eyes with variable field of view based on the bioinspiration from natural hierarchical micro–nanostructures. Nano-Micro Lett. 2020, 12, 1–16. DOI: 10.1007/s40820-020-00499-x.
  • Bae, J. W.; Shin, E.-J.; Jeong, J.; Choi, D.-S.; Lee, J. E.; Nam, B. U.; Lin, L.; Kim, S.-Y. High-performance PVC gel for adaptive micro-lenses with variable focal length. Sci. Rep. 2017, 7, 2068. DOI: 10.1038/s41598-017-02324-9.
  • Liang, D.; Wang, X.-Y. A bio-inspired optical system with a polymer membrane and integrated structure. Bioinspir. Biomim. 2016, 11, 066008. DOI: 10.1088/1748-3190/11/6/066008.
  • Li, C.; Jiang, H. Electrowetting-driven variable-focus microlens on flexible surfaces. Appl. Phys. Lett. 2012, 100, 231105–2311054.
  • Clement, C. E.; Thio, S. K.; Park, S.-Y. An optofluidic tunable fresnel lens for spatial focal control based on electrowetting-on-dielectric (EWOD). Sens. Actuator B Chem. 2017, 240, 909–915. DOI: 10.1016/j.snb.2016.08.125.
  • Li, L.; Wang, J.-H.; Wang, Q.-H.; Wu, S.-T. Displaceable and focus-tunable electrowetting optofluidic lens. Opt. Express 2018, 26, 25839–25848. DOI: 10.1364/OE.26.025839.
  • Li, L.-Y.; Yuan, R.-Y.; Wang, J.-H.; Li, L.; Wang, Q.-H. Optofluidic lens based on electrowetting liquid piston. Sci. Rep. 2019, 9, 13062. DOI: 10.1038/s41598-019-49560-9.
  • Maffli, L.; Rosset, S.; Ghilardi, M.; Carpi, F.; Shea, H. Ultrafast all‐polymer electrically tunable silicone lenses. Adv. Funct. Mater. 2015, 25, 1656–1665. DOI: 10.1002/adfm.201403942.
  • Hartmann, F.; Penkner, L.; Danninger, D.; Arnold, N.; Kaltenbrunner, M. Soft tunable lenses based on zipping electroactive polymer actuators. Adv. Sci. 2021, 8, 2003104. DOI: 10.1002/advs.202003104.
  • Hasan, N.; Kim, H.; Mastrangelo, C. H. Large aperture tunable-focus liquid lens using shape memory alloy spring. Opt. Express 2016, 24, 13334–13342. DOI: 10.1364/OE.24.013334.
  • Zhu, P.; Tang, W.; Jiao, Z.; Xu, H.; Hu, Y.; Qu, Y.; Yang, H.; Zou, J. Liquid manipulator with printed electrode patterns for soft robotic systems. Adv. Mater. Technol. 2023, 8, 2300308.
  • Kim, M.; Lee, G. J.; Choi, C.; Kim, M. S.; Lee, M.; Liu, S.; Cho, K. W.; Kim, H. M.; Cho, H.; Choi, M. K.; et al. An aquatic-vision-inspired camera based on a monocentric lens and a silicon nanorod photodiode array. Nat. Electron. 2020, 3, 546–553. DOI: 10.1038/s41928-020-0429-5.
  • Zou, Y.; Zhang, W.; Chau, F. S.; Zhou, G. Miniature adjustable-focus endoscope with a solid electrically tunable lens. Opt. Express 2015, 23, 20582–20592. DOI: 10.1364/OE.23.020582.
  • Campbell, C. E. Conditions under which two-element variable power lenses can be created. Part 1. Theoretical analysis. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2011, 28, 2148–2152. DOI: 10.1364/JOSAA.28.002148.
  • Lohmann, A. W. A new class of varifocal lenses. Appl. Opt. 1970, 9, 1669–1671. DOI: 10.1364/AO.9.001669.
  • Barbero, S.; Rubinstein, J. Adjustable-focus lenses based on the Alvarez principle. J. Opt. 2011, 13, 125705. DOI: 10.1088/2040-8978/13/12/125705.
  • Wang, G.; Chen, X.; Liu, S.; Wong, C.; Chu, S. Mechanical chameleon through dynamic real-time plasmonic tuning. ACS Nano 2016, 10, 1788–1794. DOI: 10.1021/acsnano.5b07472.
  • Xu, C.; Colorado Escobar, M.; Gorodetsky, A. A. Stretchable cephalopod‐inspired multimodal camouflage systems. Adv. Mater. 2020, 32, e1905717. DOI: 10.1002/adma.201905717.
  • Liu, Y.; Feng, Z.; Xu, C.; Chatterjee, A.; Gorodetsky, A. A. Reconfigurable micro-and nano-structured camouflage surfaces inspired by cephalopods. ACS Nano 2021, 15, 17299–17309. DOI: 10.1021/acsnano.0c09990.
  • Chandra, S.; Franklin, D.; Cozart, J.; Safaei, A.; Chanda, D. Adaptive multispectral infrared camouflage. ACS Photonics 2018, 5, 4513–4519. DOI: 10.1021/acsphotonics.8b00972.
  • Kim, H.; Choi, J.; Kim, K. K.; Won, P.; Hong, S.; Ko, S. H. Biomimetic chameleon soft robot with artificial crypsis and disruptive coloration skin. Nat. Commun. 2021, 12, 4658. DOI: 10.1038/s41467-021-24916-w.
  • Schuhladen, S.; Preller, F.; Rix, R.; Petsch, S.; Zentel, R.; Zappe, H. Iris‐like tunable aperture employing liquid‐crystal elastomers. Adv. Mater. 2014, 26, 7247–7251. DOI: 10.1002/adma.201402878.
  • Hsu, T.-C.; Lu, C.-H.; Huang, Y.-T.; Shih, W.-P.; Chen, W.-S. Concentric polymer-dispersed liquid crystal rings for light intensity modulation. Sens. Actuator A Phys. 2011, 169, 341–346. DOI: 10.1016/j.sna.2011.01.018.
  • Dürr, H.; Bouas-Laurent, H. Photochromism: molecules and systems. Elsevier: Tokyo, 2003.
  • Shareef, F. J.; Sun, S.; Kotecha, M.; Kassem, I.; Azar, D.; Cho, M. Engineering a Light-Attenuating Artificial Iris. Invest Ophthalmol. Vis. Sci. 2016, 57, 2195–2202. DOI: 10.1167/iovs.15-17310.
  • Zeng, H.; Wani, O. M.; Wasylczyk, P.; Kaczmarek, R.; Priimagi, A. Self‐regulating iris based on light‐actuated liquid crystal elastomer. Adv. Mater. 2017, 29, 1701814. DOI: 10.1002/adma.201701814.
  • Chang, K. T.; Liu, C. Y.; Liu, J. H. Tunable artificial iris controlled by photo/thermal exposure based on liquid crystalline elastomers. Macro Mater. Eng. 2021, 306, 2100121. DOI: 10.1002/mame.202100121.
  • Liu, C.-Y.; Chang, C.-H.; Tran Thi, T.; Wu, G.-Y.; Tu, C.-M.; Chen, H.-Y. Thermal-/light-tunable hydrogels showing reversible widening and closing actuations based on predesigned interpenetrated networks. ACS Appl. Polym. Mater. 2022, 4, 1931–1939. DOI: 10.1021/acsapm.1c01776.
  • Kim, Y.; Chun, K. Tunable aperture with liquid crystal for real-time distance sensor. IEEE Electron Device Lett. 2019, 40, 1836–1839. DOI: 10.1109/LED.2019.2945109.
  • Lee, J. H.; Kim, H.; Hwang, J.-Y.; Chung, J.; Jang, T.-M.; Seo, D. G.; Gao, Y.; Lee, J.; Park, H.; Lee, S.; et al. 3D printed, customizable, and multifunctional smart electronic eyeglasses for wearable healthcare systems and human–machine interfaces. ACS Appl. Mater. Interfaces 2020, 12, 21424–21432. DOI: 10.1021/acsami.0c03110.
  • Gao, L.; Zeng, K.; Guo, J.; Ge, C.; Du, J.; Zhao, Y.; Chen, C.; Deng, H.; He, Y.; Song, H.; et al. Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity and polarization sensitivity. Nano Lett. 2016, 16, 7446–7454. DOI: 10.1021/acs.nanolett.6b03119.
  • Wu, D.; Guo, J.; Du, J.; Xia, C.; Zeng, L.; Tian, Y.; Shi, Z.; Tian, Y.; Li, X. J.; Tsang, Y. H.; Jie, J. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano 2019, 13, 9907–9917. DOI: 10.1021/acsnano.9b03994.
  • Phillips, D. B.; Sun, M.-J.; Taylor, J. M.; Edgar, M. P.; Barnett, S. M.; Gibson, G. M.; Padgett, M. J. Adaptive foveated single-pixel imaging with dynamic super sampling. Sci. Adv. 2017, 3, e1601782. DOI: 10.1126/sciadv.1601782.
  • Liu, H.; Huang, Y.; Jiang, H. Artificial eye for scotopic vision with bioinspired all-optical photosensitivity enhancer. Proc. Natl. Acad. Sci. U S A 2016, 113, 3982–3985. DOI: 10.1073/pnas.1517953113.
  • Voigt, F. F.; Reuss, A. M.; Naert, T.; Hildebrand, S.; Schaettin, M.; Hotz, A. L.; Whitehead, L.; Bahl, A.; Neuhauss, S. C. F.; Roebroeck, A.; et al. Reflective multi-immersion microscope objectives inspired by the Schmidt telescope. Nat. Biotechnol. 2023, 42, 65–71. DOI: 10.1038/s41587-023-01717-8.
  • Lou, D.; Sun, Y.; Li, J.; Zheng, Y.; Zhou, Z.; Yang, J.; Pan, C.; Zheng, Z.; Chen, X.; Liu, W. Double lock label based on thermosensitive polymer hydrogels for information camouflage and multilevel encryption. Angew. Chem. Int. Edit. 2022, 61, e202117066.
  • Waniek, M.; Michalak, T. P.; Wooldridge, M. J.; Rahwan, T. Hiding individuals and communities in a social network. Nat. Hum. Behav. 2018, 2, 139–147. DOI: 10.1038/s41562-017-0290-3.
  • Chen, L.; Ghilardi, M.; Busfield, J. J.; Carpi, F. Electrically tunable lenses: A review. Front Robot AI 2021, 8, 678046. DOI: 10.3389/frobt.2021.678046.
  • Liebetraut, P.; Petsch, S.; Liebeskind, J.; Zappe, H. Elastomeric lenses with tunable astigmatism. Light Sci. Appl. 2013, 2, e98–e98. DOI: 10.1038/lsa.2013.54.
  • Song, X.; Zhang, H.; Li, D.; Jia, D.; Liu, T. Electrowetting lens with large aperture and focal length tunability. Sci. Rep. 2020, 10, 16318. DOI: 10.1038/s41598-020-73260-4.
  • Ren, H.; Fox, D.; Anderson, P. A.; Wu, B.; Wu, S.-T. Tunable-focus liquid lens controlled using a servo motor. Opt. Express 2006, 14, 8031–8036. DOI: 10.1364/oe.14.008031.
  • Lin, Y.-H.; Chen, H.-S. Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications. Opt. Express 2013, 21, 9428–9436. DOI: 10.1364/OE.21.009428.
  • Shamuilov, G.; Domina, K.; Khardikov, V.; Nikitin, A. Y.; Goryashko, V. Optical magnetic lens: towards actively tunable terahertz optics. Nanoscale 2021, 13, 108–116. DOI: 10.1039/d0nr06198k.
  • Ko, J. H.; Yoo, Y. J.; Lee, Y.; Jeong, H.-H.; Song, Y. M. A review of tunable photonics: Optically active materials and applications from visible to terahertz. iScience 2022, 25, 104727. DOI: 10.1016/j.isci.2022.104727.
  • Kang, Q.; Guo, K.; Guo, Z. A tunable infrared emitter based on phase-changing material GST for visible-infrared compatible camouflage with thermal management. Phys. Chem. Chem. Phys. 2023, 25, 27668–27676. DOI: 10.1039/d3cp02983b.
  • Lee, J.; Park, Y.; Chung, S. K. Multifunctional liquid lens for variable focus and aperture. Sens. Actuator A-Phys. 2019, 287, 177–184. DOI: 10.1016/j.sna.2019.01.014.
  • Hung, K.-Y.; Tseng, F.-G.; Liao, T.-H. Electrostatic-force-modulated microaspherical lens for optical pickup head. J. Microelectromech. Syst. 2008, 17, 370–380.
  • Kang, Q.; Li, D.; Guo, K.; Gao, J.; Guo, Z. Tunable thermal camouflage based on GST plasmonic metamaterial. Nanomaterials 2021, 11, 260. DOI: 10.3390/nano11020260.
  • Qu, Y.; Li, Q.; Cai, L.; Pan, M.; Ghosh, P.; Du, K.; Qiu, M. Thermal camouflage based on the phase-changing material GST. Light-Sci. Appl. 2018, 7, 26.
  • Muller, P.; Spengler, N.; Zappe, H.; Monch, W. An optofluidic concept for a tunable micro-iris. J. Microelectromech. Syst. 2010, 19, 1477–1484. DOI: 10.1109/JMEMS.2010.2079917.
  • Ashtiani, A.; Jiang, H. Thermally actuated liquid tunable microlens with embedded thermoelectric driver and sub-second response time. In 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII) (IEEE). 2013;pp 2604–2607. DOI: 10.1109/Transducers.2013.6627339.
  • Zhu, D.; Lo, C.-W.; Li, C.; Jiang, H. Hydrogel-based tunable-focus liquid microlens array with fast response time. J. Microelectromech. Syst. 2012, 21, 1146–1155. DOI: 10.1109/JMEMS.2012.2196492.
  • Xiao, L.; Ma, H.; Liu, J.; Zhao, W.; Jia, Y.; Zhao, Q.; Liu, K.; Wu, Y.; Wei, Y.; Fan, S.; Jiang, K. Fast adaptive thermal camouflage based on flexible VO2/Graphene/CNT thin films. Nano Lett. 2015, 15, 8365–8370. DOI: 10.1021/acs.nanolett.5b04090.
  • Liao, Y.; Fan, Y.; Lei, D. Thermally tunable binary-phase VO2 metasurfaces for switchable holography and digital encryption. Nanophotonics 2024. DOI: 10.1515/nanoph-2023-0824.
  • Li, M.; Liu, D.; Cheng, H.; Peng, L.; Zu, M. Manipulating metals for adaptive thermal camouflage. Sci. Adv. 2020, 6, eaba3494. DOI: 10.1126/sciadv.aba3494.
  • Zhang, J.; Huang, S.; Hu, R. Adaptive radiative thermal camouflage via synchronous heat conduction. Chin. Phys. Lett. 2021, 38, 010502. DOI: 10.1088/0256-307X/38/1/010502.
  • Jiang, L.; Wang, Y.; Wang, X.; Ning, F.; Wen, S.; Zhou, Y.; Chen, S.; Betts, A.; Jerrams, S.; Zhou, F.-L. Electrohydrodynamic printing of a dielectric elastomer actuator and its application in tunable lenses. Comp. A Appl. Sci. Manuf. 2021, 147, 106461. DOI: 10.1016/j.compositesa.2021.106461.
  • Torres-Sepúlveda, W.; Henao, J.; Morales-Marín, J.; Mira-Agudelo, A.; Rueda, E. Hysteresis characterization of an electrically focus-tunable lens. Opt. Eng. 2020, 59, 1. DOI: 10.1117/1.OE.59.4.044103.
  • Jian, Z.; Tong, Z.; Ma, Y.; Wang, M.; Jia, S.; Chen, X. Laser beam modulation with a fast focus tunable lens for speckle reduction in laser projection displays. Opt. Lasers Eng. 2020, 126, 105918. DOI: 10.1016/j.optlaseng.2019.105918.
  • Wu, Q.; Zhang, H.; Jia, D.; Liu, T. Recent development of tunable optical devices based on liquid. Molecules 2022, 27, 8025. DOI: 10.3390/molecules27228025.
  • Mishra, K.; Murade, C.; Carreel, B.; Roghair, I.; Oh, J. M.; Manukyan, G.; van den Ende, D.; Mugele, F. Optofluidic lens with tunable focal length and asphericity. Sci. Rep. 2014, 4, 6378. DOI: 10.1038/srep06378.
  • Yu, H.; Zhou, G.; Leung, H. M.; Chau, F. S. Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation. Opt. Express 2010, 18, 9945–9954. DOI: 10.1364/OE.18.009945.
  • Chen, Q.; Tong, X.; Zhu, Y.; Tsoi, C. C.; Jia, Y.; Li, Z.; Zhang, X. Aberration-free aspherical in-plane tunable liquid lenses by regulating local curvatures. Lab Chip 2020, 20, 995–1001. DOI: 10.1039/c9lc01217f.
  • Ko, H. C.; Stoykovich, M. P.; Song, J.; Malyarchuk, V.; Choi, W. M.; Yu, C.-J.; Geddes, J. B.; Xiao, J.; Wang, S.; Huang, Y.; Rogers, J. A. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 2008, 454, 748–753. DOI: 10.1038/nature07113.
  • Chang, S.; Koo, J. H.; Yoo, J.; Kim, M. S.; Choi, M. K.; Kim, D.-H.; Song, Y. M. Flexible and stretchable light-emitting diodes and photodetectors for human-centric optoelectronics. Chem. Rev. 2024, 124, 768–859. DOI: 10.1021/acs.chemrev.3c00548.
  • Zhang, F.; Jin, T.; Xue, Z.; Zhang, Y. Recent progress in three-dimensional flexible physical sensors. Int. J. Smart Nano Mater. 2022, 13, 17–41. DOI: 10.1080/19475411.2022.2047827.
  • Agarwala, R.; Sanz, O. L.; Seitz, I. P.; Reichel, F. F.; Wahl, S. Evaluation of a liquid membrane-based tunable lens and a solid-state LIDAR camera feedback system for presbyopia. Biomed. Opt. Express 2022, 13, 5849–5859. DOI: 10.1364/BOE.471190.
  • Padmanaban, N.; Konrad, R.; Wetzstein, G. Autofocals: Evaluating gaze-contingent eyeglasses for presbyopes. Sci. Adv. 2019, 5, eaav6187. DOI: 10.1126/sciadv.aav6187.
  • Youn, J.-H.; Hyeon, K.; Ma, J. H.; Kyung, K.-U. A piecewise controllable tunable lens with large aperture for eyewear application. Smart Mater. Struct. 2019, 28, 124001. DOI: 10.1088/1361-665X/ab5165.
  • Blum, M.; Büeler, M.; Grätzel, C.; Aschwanden, M. 2011 Compact optical design solutions using focus tunable lenses. In Optical Design and Engineering IV (SPIE), pp 274–282. DOI: 10.1117/12.897608.
  • Chen, Y.; Liu, H.; Zhou, Y.; Kuang, F.-L.; Li, L. Extended the depth of field and zoom microscope with varifocal lens. Sci. Rep. 2022, 12, 11015. DOI: 10.1038/s41598-022-15166-x.
  • Liang, L.; Yu, R.; Ong, S. J. H.; Yang, Y.; Zhang, B.; Ji, G.; Xu, Z. J. An adaptive multispectral mechano-optical system for multipurpose applications. ACS Nano 2023, 17, 12409–12421. DOI: 10.1021/acsnano.3c01836.
  • Liu, H.; Yu, L.; Zhao, B.; Ni, Y.; Gu, P.; Qiu, H.; Zhang, W.; Chen, K. Bio-inspired color-changing and self-healing hybrid hydrogels for wearable sensors and adaptive camouflage. J. Mater. Chem. C 2023, 11, 285–298. DOI: 10.1039/D2TC03102G.
  • Gui, B.; Wang, J.; Lu, X.; Zhu, Y.; Zhang, L.; Feng, M.; Huang, W.; Wang, J.; Ma, H.; Qu, S. Spectrally-switchable infrared selective emitters for adaptive camouflage. Infrared Phys. Technol. 2022, 126, 104363. DOI: 10.1016/j.infrared.2022.104363.
  • Fu, G.; Gong, H.; Xu, J.; Zhuang, B.; Rong, B.; Zhang, Q.; Chen, X.; Liu, J.; Wang, H. Highly integrated all-in-one electrochromic fabrics towards unmanned environmental adaptive camouflage. J. Mater. Chem. A 2024, 12, 6351–6358. DOI: 10.1039/D3TA07562A.
  • Viková, M.; Pechová, M. Study of adaptive thermochromic camouflage for combat uniform. Text. Res. J. 2020, 90, 2070–2084. DOI: 10.1177/0040517520910217.
  • Fu, H.; Zhang, L.; Dong, Y.; Zhang, C.; Li, W. Recent advances on electrochromic materials and devices for camouflage application. Mater. Chem. Front 2023, 7, 2337–2358. DOI: 10.1039/D3QM00121K.
  • Ma, T.; Bai, J.; Li, T.; Chen, S.; Ma, X.; Yin, J.; Jiang, X. Light-driven dynamic surface wrinkles for adaptive visible camouflage. Proc. Natl. Acad. Sci. U. S. A 2021, 118, e2114345118.
  • Su, Y.; Deng, Z.; Qin, W.; Wang, X.; Gong, R. Adaptive infrared camouflage based on quasi-photonic crystal with Ge2Sb2Te5. Opt. Commun. 2021, 497, 127203. DOI: 10.1016/j.optcom.2021.127203.
  • Park, I. S.; Park, Y.; Oh, S. H.; Yang, J. W.; Chung, S. K. Multifunctional liquid lens for variable focus and zoom. Sens. Actuator A-Phys. 2018, 273, 317–323. DOI: 10.1016/j.sna.2018.02.017.
  • Dagan, E.; Mano, O.; Stein, G. P.; Shashua, A. Forward collision warning with a single camera. In IEEE Intelligent Vehicles Symposium, 2004. IEEE, 2004;37–42. DOI: 10.1109/IVS.2004.1336352.
  • Yu, H.; Zhou, G.; Chau, F. S. 2012 An electrostatically-driven MEMS tunable miniature iris diaphragm. In 2012 International Conference on Optical MEMS and Nanophotonics. IEEE, 2012;164–165.
  • Bae, S.-I.; Lee, Y.; Jeong, K.-H. 2018 Endoscope camera using tunable liquid-filled lens with antireflective structures. In 2018 IEEE Micro Electro Mechanical Systems (MEMS); IEEE, 2018;380–383. DOI: 10.1109/MEMSYS.2018.8346567.
  • Zou, Y.; Chau, F. S.; Zhou, G. Ultra-compact optical zoom endoscope using solid tunable lenses. Opt. Express 2017, 25, 20675–20688. DOI: 10.1364/OE.25.020675.
  • De Pauw, T.; Kalmar, A.; Van De Putte, D.; Mabilde, C.; Blanckaert, B.; Maene, L.; Lievens, M.; Van Haver, A.-S.; Bauwens, K.; Van Nieuwenhove, Y.; Dewaele, F. A novel hybrid 3D endoscope zooming and repositioning system: Design and feasibility study. Int. J. Med. Robot 2020, 16, e2050. DOI: 10.1002/rcs.2050.
  • Zhang, Z.; Li, L.; Liu, X.; Li, L.; Li, Y. Zoom liquid lens with switchable aperture. Opt. Lasers Eng. 2023, 163, 107450. DOI: 10.1016/j.optlaseng.2022.107450.
  • Koulieris, G.-A.; Bui, B.; Banks, M. S.; Drettakis, G. Accommodation and comfort in head-mounted displays. ACM Trans. Graph 2017, 36, 1–11. DOI: 10.1145/3072959.3073622.
  • Johnson, P. V.; Parnell, J. A.; Kim, J.; Saunter, C. D.; Love, G. D.; Banks, M. S. Dynamic lens and monovision 3D displays to improve viewer comfort. Opt. Express 2016, 24, 11808–11827. DOI: 10.1364/OE.24.011808.
  • Piskunov, D. E.; Danilova, S. V.; Tigaev, V. O.; Borisov, V. N.; Popov, M. V. Tunable lens for AR headset. In Digital optics for immersive displays II (SPIE) 2020, 79–88.