255
Views
1
CrossRef citations to date
0
Altmetric
Original Investigation

Strict network analysis of evolutionary conserved and brain-expressed genes reveals new putative candidates implicated in Intellectual Disability and in Global Development Delay

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 435-445 | Received 29 May 2020, Accepted 01 Sep 2020, Published online: 06 Oct 2020

References

  • Alazami AM, Patel N, Shamseldin HE, Anazi S, Al-Dosari MS, Alzahrani F, Hijazi H, Alshammari M, Aldahmesh MA, Salih MA, et al. 2015. Accelerating novel candidate gene discovery in neurogenetic disorders via whole-exome sequencing of prescreened multiplex consanguineous families. Cell Rep. 10(2):148–161.
  • Ardlie KG, Deluca DS, Segre AV, Sullivan TJ, Young TR, Gelfand ET, Trowbridge CA, Maller JB, Tukiainen T, Lek M, et al. 2015. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 348(6235):648–660.
  • Arendt D, Tosches MA, Marlow H. 2016. From nerve net to nerve ring, nerve cord and brain-evolution of the nervous system. Nat Rev Neurosci. 17(1):61–72.
  • Basso V, Corbetta S, Gualdoni S, Tonoli D, Poliani PL, Sanvito F, Doglioni C, Mondino A, de Curtis I. 2011. Absence of Rac1 and Rac3 GTPases in the nervous system hinders thymic, splenic and immune-competence development. Eur J Immunol. 41(5):1410–1419.
  • Battle DE. 2013. Diagnostic and Statistical Manual of Mental Disorders (DSM). CoDAS. 25(2):191–192.
  • Bonhoeffer T, Yuste R. 2002. Spine motility. Phenomenology, mechanisms, and function. Neuron. 35(6):1019–1027.
  • Casanova EL, Gerstner Z, Sharp JL, Casanova MF, Feltus FA. 2018. Widespread genotype-phenotype correlations in intellectual disability. Front Psychiatry. 9:535–511.
  • Casanova EL, Sharp JL, Chakraborty H, Sumi NS, Casanova MF. 2016. Genes with high penetrance for syndromic and non-syndromic autism typically function within the nucleus and regulate gene expression. Mol Autism. 7:18.
  • Corbetta S, Gualdoni S, Ciceri G, Monari M, Zuccaro E, Tybulewicz VLJ, de Curtis I. 2009. Essential role of Rac1 and Rac3 GTPases in neuronal development. Faseb J. 23(5):1347–1357.
  • Delgado-Martín C, Escribano C, Pablos JL, Riol-Blanco L, Rodríguez-Fernández JL. 2011. Chemokine CXCL12 uses CXCR4 and a signaling core formed by bifunctional Akt, extracellular signal-regulated kinase (ERK)1/2, and mammalian target of rapamycin complex 1 (mTORC1) proteins to control chemotaxis and survival simultaneously in mature dendritic cells. J Biol Chem. 286(43):37222–37236.
  • Du Y, Deng W, Wang Z, Ning M, Zhang W, Zhou Y, Lo EH, Xing C. 2017. Differential subnetwork of chemokines/cytokines in human, mouse, and rat brain cells after oxygen-glucose deprivation. J Cereb Blood Flow Metab. 37(4):1425–1434.
  • Eaton S. 1997. Planar polarization of Drosophila and vertebrate epithelia. Curr Opin Cell Biol. 9(6):860–866.
  • Ehrhart F, Coort SL, Eijssen L, Cirillo E, Smeets EE, NB, Sangani, et al. 2019. Integrated analysis of human transcriptome data for Rett syndrome finds a network of involved genes. World J Biol Psychiatry. [epub ahead of print]. DOI:10.1080/15622975.2019.1593501
  • Fatemi SH, Folsom TD, Kneeland RE, Yousefi MK, Liesch SB, Thuras PD. 2013. Impairment of fragile X mental retardation protein-metabotropic glutamate receptor 5 signaling and its downstream cognates ras-related C3 botulinum toxin substrate 1, amyloid beta A4 precursor protein, striatal-enriched protein tyrosine phosphatase, and h. Mol Autism. 4(1):21.
  • Firth HV, Richards SM, Bevan AP, Clayton S, Corpas M, Rajan D, Van Vooren S, Moreau Y, Pettett RM, Carter NP, et al. 2009. DECIPHER: database of chromosomal imbalance and phenotype in humans using ensembl resources. Am J Hum Genet. 84(4):524–533.
  • Gauthier-Rouvière C, Causeret M, Comunale F, Charrasse S. 2005. Cadherin-mediated cell-cell adhesion and the microtubule network. In: Rise and Fall of Epithelial Phenotype. Boston (MA): Springer US. p. 288–296.
  • Gécz J, Shoubridge C, Corbett M. 2009. The genetic landscape of intellectual disability arising from chromosome X. Trends Genet. 25(7):308–316.
  • Gilissen C, Hehir-Kwa JY, Thung DT, van de Vorst M, van Bon BWM, Willemsen MH, Kwint M, Janssen IM, Hoischen A, Schenck A, et al. 2014. Genome sequencing identifies major causes of severe intellectual disability. Nature. 511(7509):344–347.
  • Gonçalves TF, Piergiorge RM, Dos Santos JM, Gusmão J, Pimentel MMG, Santos-Rebouças CB. 2019. Network profiling of brain-expressed X-chromosomal MicroRNA genes implicates shared Key MicroRNAs in intellectual disability. J Mol Neurosci. 67(2):295–304.
  • Goto T, Sato A, Adachi S, Iemura S, Natsume T, Shibuya H. 2013. IQGAP1 protein regulates nuclear localization of β-catenin via importin-β5 protein in Wnt signaling. J Biol Chem. 288(51):36351–36260.
  • Hegarty SV, O'Leary E, Solger F, Stanicka J, Sullivan AM, O'Keeffe GW. 2016. A small molecule activator of p300/CBP histone acetyltransferase promotes survival and neurite growth in a cellular model of Parkinson’s disease. Neurotox Res. 30(3):510–520.
  • Henderson NT, Dalva MB. 2018. EphBs and ephrin-Bs: trans-synaptic organizers of synapse development and function. Mol Cell Neurosci. 91:108–121.
  • Hetman M, Slomnicki LP. 2019. Ribosomal biogenesis as an emerging target of neurodevelopmental pathologies. J Neurochem. 148(3):325–347.
  • Hocquemiller M, Giersch L, Audrain M, Parker S, Cartier N. 2016. Adeno-associated virus-based gene therapy for CNS diseases. Hum Gene Ther. 27(7):478–496.
  • Hormozdiari F, Penn O, Borenstein E, Eichler EE. 2015. The discovery of integrated gene networks for autism and related disorders. Genome Res. 25(1):142–154.
  • Hu H, Haas SA, Chelly J, Van Esch H, Raynaud M, de Brouwer APM, Weinert S, Froyen G, Frints SGM, Laumonnier F, et al. 2016. X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes. Mol Psychiatry. 21(1):133–148.
  • Jameson KL, Mazur PK, Zehnder AM, Zhang J, Zarnegar B, Sage J, Khavari PA. 2013. IQGAP1 scaffold-kinase interaction blockade selectively targets RAS-MAP kinase-driven tumors. Nat Med. 19(5):626–630.
  • Jamra R. 2018. Genetics of autosomal recessive intellectual disability. Med Genet. 30(3):323–327.
  • Kasherman MA, Premarathne S, Burne THJ, Wood SA, Piper M. 2020. The ubiquitin system: a regulatory hub for intellectual disability and autism spectrum disorder. Mol Neurobiol. 57(5):2179–2193.
  • Kirsch L, Chechik G. 2016. On expression patterns and developmental origin of human brain regions. PLoS Comput Biol. 12:e1005064.
  • Kochinke K, Zweier C, Nijhof B, Fenckova M, Cizek P, Honti F, Keerthikumar S, Oortveld MAW, Kleefstra T, Kramer JM, et al. 2016. Systematic phenomics analysis deconvolutes genes mutated in intellectual disability into biologically coherent modules. Am J Hum Genet. 98(1):149–164.
  • Köhler S, Carmody L, Vasilevsky N, Jacobsen JOB, Danis D, Gourdine J-P, Gargano M, Harris NL, Matentzoglu N, McMurry JA, et al. 2019. Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources. Nucleic Acids Res. 47(D1):D1018–D1027.
  • Koscielny G, An P, Carvalho-Silva D, Cham JA, Fumis L, Gasparyan R, Hasan S, Karamanis N, Maguire M, Papa E, et al. 2017. Open targets: a platform for therapeutic target identification and validation. Nucleic Acids Res. 45(D1):D985–D994.
  • Kwon D, Lee D, Kim J, Lee J, Sim M, Kim J. 2018. INTERSPIA: a web application for exploring the dynamics of protein-protein interactions among multiple species. Nucleic Acids Res. 46(W1):W89–W94.
  • Lee S, Rudd S, Gratten J, Visscher PM, Prins JB, Dawson PA. 2018. Gene networks associated with non-syndromic intellectual disability. J Neurogenet. 32(1):6–14.
  • Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B. 2019. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 47(W1):W199–W205.
  • Lohmann K, Masuho I, Patil DN, Baumann H, Hebert E, Steinrücke S, Trujillano D, Skamangas NK, Dobricic V, Hüning I, et al. 2017. Novel GNB1 mutations disrupt assembly and function of G protein heterotrimers and cause global developmental delay in humans. Hum Mol Genet. 26(6):1078–1086.
  • Margiotta A, Bucci C. 2019. Coordination between Rac1 and Rab Proteins: functional implications in health and disease. Cells. 8:396.
  • Mattson MP. 2003. Methylation and acetylation in nervous system development and neurodegenerative disorders. Ageing Res Rev. 2:329–342.
  • Mithal DS, Banisadr G, Miller RJ. 2012. CXCL12 signaling in the development of the nervous system. J Neuroimmune Pharmacol. 7(4):820–834.
  • Moen MJ, Adams HHH, Brandsma JH, Dekkers DHW, Akinci U, Karkampouna S, Quevedo M, Kockx CEM, Ozgür Z, van IJcken WFJ, et al. 2017. An interaction network of mental disorder proteins in neural stem cells. Transl Psychiatry. 7(4):e1082
  • Mosca E, Bersanelli M, Gnocchi M, Moscatelli M, Castellani G, Milanesi L, Mezzelani A. 2017. Network diffusion-based prioritization of autism risk genes identifies significantly connected gene modules. Front Genet. 8:129.
  • Neri G, Schwartz CE, Lubs HA, Stevenson RE. 2018. X-linked intellectual disability update 2017. Am J Med Genet A. 176(6):1375–1388.
  • Ng J, Luo L. 2004. Rho GTPases regulate axon growth through convergent and divergent signaling pathways. Neuron. 44(5):779–793.
  • Nguyen DK, Disteche CM. 2006. High expression of the mammalian X chromosome in brain. Brain Res. 1126(1):46–49.
  • Nguyen P-V, Srihari S, Leong HW. 2013. Identifying conserved protein complexes between species by constructing interolog networks. BMC Bioinf. 14(Suppl 16):S8.
  • Parikshak NN, Gandal MJ, Geschwind DH. 2015. Systems biology and gene networks in neurodevelopmental and neurodegenerative disorders. Nat Rev Genet. 16(8):441–458.
  • Petrovski S, Küry S, Myers CT, Anyane-Yeboa K, Cogné B, Bialer M, Xia F, Hemati P, Riviello J, Mehaffey M, et al. 2016. Germline De Novo mutations in GNB1 cause severe neurodevelopmental disability, hypotonia, and seizures. Am J Hum Genet. 98(5):1001–1010.
  • Piñero J, Queralt-Rosinach N, Bravo À, Deu-Pons J, Bauer-Mehren A, Baron M, Sanz F, Furlong LI. 2015. DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database. 2015:bav028.
  • Pujana MA, Han J-DJ, Starita LM, Stevens KN, Tewari M, Ahn JS, Rennert G, Moreno V, Kirchhoff T, Gold B, et al. 2007. Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat Genet. 39(11):1338–1349.
  • Ropers HH. 2010. Genetics of early onset cognitive impairment. Annu Rev Genomics Hum Genet. 11:161–187.
  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11):2498–2504.
  • Sherr EH, Shevell MI. 2017. Global developmental delay and intellectual disability. In: Swaiman’s Pediatric Neurology. 6th ed. Philadelphia: Elsevier; p. 418–423.
  • Shevell M, Ashwal S, Donley D, Flint J, Gingold M, Hirtz D, Majnemer A, Noetzel M, Sheth RD. 2003. Practice parameter: evaluation of the child with global developmental delay: report of the quality standards subcommittee of the American Academy of neurology and the practice committee of the child neurology society. Neurology. 60(3):367–380.
  • Smith CL, Eppig JT. 2009. The mammalian phenotype ontology: enabling robust annotation and comparative analysis. Wiley Interdiscip Rev Syst Biol Med. 1(3):390–399.
  • Sokol DK, Maloney B, Long JM, Ray B, Lahiri DK. 2011. Autism, Alzheimer disease, and fragile X: APP, FMRP, and mGluR5 are molecular links. Neurology. 76(15):1344–1352.
  • Soskis MJ, Ho H-YH, Bloodgood BL, Robichaux MA, Malik AN, Ataman B, Rubin AA, Zieg J, Zhang C, Shokat KM, et al. 2012. A chemical genetic approach reveals distinct EphB signaling mechanisms during brain development. Nat Neurosci. 15(12):1645–1654.
  • Srivastava AK, Schwartz CE. 2014. Intellectual disability and autism spectrum disorders: causal genes and molecular mechanisms. Neurosci Biobehav Rev. 46:161–174.
  • Srour M, Shevell M. 2014. Global developmental delay and intellectual disability. In: Rosenberg’s molecular and genetic basis of neurological and psychiatric disease. 5th ed. Philadelphia: Elsevier Inc; p. 151–161.
  • Steinlin M. 2008. Cerebellar disorders in childhood: cognitive problems. Cerebellum. 7(4):607–610.
  • Steinrücke S, Lohmann K, Domingo A, Rolfs A, Bäumer T, Spiegler J, Hartmann C, Münchau A. 2016. Novel GNB1 missense mutation in a patient with generalized dystonia, hypotonia, and intellectual disability. Neurol Genet. 2(5):e106.
  • Stevenson RE, Schwartz CE. 2009. X-linked intellectual disability: unique vulnerability of the male genome. Dev Disabil Res Rev. 15(4):361–368.
  • Stirnimann CU, Petsalaki E, Russell RB, Müller CW. 2010. WD40 proteins propel cellular networks. Trends Biochem Sci. 35(10):565–574.
  • Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, et al. 2015. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43(Database issue):D447–D452.
  • Tanno LK, Chalmers RJG, Calderon MA, Aymé S, Demoly P. 2017. Reaching multidisciplinary consensus on classification of anaphylaxis for the eleventh revision of the World Health Organization’s (WHO) International Classification of Diseases (ICD-11). Orphanet J Rare Dis. 12:53.
  • Thévenin A, Ein-Dor L, Ozery-Flato M, Shamir R. 2014. Functional gene groups are concentrated within chromosomes, among chromosomes and in the nuclear space of the human genome. Nucleic Acids Res. 42(15):9854–9861.
  • van Bokhoven H. 2011. Genetic and epigenetic networks in intellectual disabilities. Annu Rev Genet. 45:81–104.
  • Vasudevan P, Suri M. 2017. A clinical approach to developmental delay and intellectual disability. Clin Med. 17(6):558–561.
  • Vissers LELM, Gilissen C, Veltman JA. 2016. Genetic studies in intellectual disability and related disorders. Nat Rev Genet. 17(1):9–18.
  • Wiedemann A, Lim J, Caron E. 2008. Small GTP Binding Proteins and the Control of Phagocytic Uptake. In: Molecular Mechanisms of Phagocytosis. Boston (MA): Springer US. p. 72–84.
  • Wong MM, Byun JS, Sacta M, Baek JQ, Gardner SF. 2014. Promoter-bound p300 complexes facilitate post-mitotic transmission of transcriptional memory. PLoS One 9:e99989.
  • Wu Q, Nie J, Gao Y, Xu P, Sun Q, Yang J, Han L, Chen Z, Wang X, Lv L, et al. 2015. Reciprocal regulation of RORγt acetylation and function by p300 and HDAC1. Sci Rep. 5:16355.
  • Xu H, Leinwand SG, Dell AL, Fried-Cassorla E, Raper JA. 2010. The calmodulin-stimulated adenylate cyclase ADCY8 sets the sensitivity of zebrafish retinal axons to midline repellents and is required for normal midline crossing. J Neurosci. 30(21):7423–7433.
  • Yang IS, Kim S. 2015. Analysis of whole transcriptome sequencing data: workflow and software. Genomics Inform. 13(4):119–125.
  • Yrigollen C, Davidson B. 2019. CRISPR to the rescue: advances in gene editing for the FMR1 gene. Brain Sci. 9(1):17.
  • Yuste R, Bonhoeffer T. 2004. Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nat Rev Neurosci. 5(1):24–34.
  • Zamboni V, Jones R, Umbach A, Ammoni A, Passafaro M, Hirsch E, Merlo G. 2018. Rho GTPases in intellectual disability: from genetics to therapeutic opportunities. Int J Mol Sci. 19(6):1821.
  • Zhang Y, Liao J-M, Zeng SX, Lu H. 2011. p53 downregulates Down syndrome-associated DYRK1A through miR-1246. EMBO Rep. 12(8):811–817.
  • Zhao J, Lee SH, Huss M, Holme P. 2013. The network organization of cancer-associated protein complexes in human tissues. Sci Rep. 3:1583.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.