60
Views
0
CrossRef citations to date
0
Altmetric
Original Investigations

Neural stem/progenitor cells from olfactory neuroepithelium collected by nasal brushing as a cell model reflecting molecular and cellular dysfunctions in schizophrenia

, ORCID Icon, ORCID Icon, ORCID Icon, , , , ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 317-329 | Received 11 Jan 2024, Accepted 15 May 2024, Published online: 13 Jun 2024

References

  • Alciati A, Reggiani A, Caldirola D, Perna G. 2022. Human-induced pluripotent stem cell technology: toward the future of personalized psychiatry. J Pers Med. 12(8):1340. doi: 10.3390/jpm12081340.
  • Arredondo SB, Valenzuela-Bezanilla D, Mardones MD, Varela-Nallar L. 2020. Role of Wnt signaling in adult hippocampal neurogenesis in health and disease. Front Cell Dev Biol. 8:860. doi: 10.3389/fcell.2020.00860.
  • Aydin K, Ucok A, Guler J. 2008. Altered metabolic integrity of corpus callosum among individuals at ultra high risk of schizophrenia and first-episode patients. Biol Psychiatry. 64(9):750–757. doi: 10.1016/j.biopsych.2008.04.007.
  • Bengoa-Vergniory N, Kypta RM. 2015. Canonical and noncanonical wnt signaling in neural stem/progenitor cells. Cell Mol Life Sci. 72(21):4157–4172. doi: 10.1007/s00018-015-2028-6.
  • Benítez-King G, Riquelme A, Ortíz-López L, Berlanga C, Rodríguez-Verdugo MS, Romo F, Calixto E, Solís-Chagoyán H, Jímenez M, Montaño LM, et al. 2011. A non-invasive method to isolate the neuronal linage from the nasal epithelium from schizophrenic and bipolar diseases. J Neurosci Methods. 201(1):35–45. doi: 10.1016/j.jneumeth.2011.07.009.
  • Benítez-King G, Valdés-Tovar M, Trueta C, Galván-Arrieta T, Argueta J, Alarcón S, Lora-Castellanos A, Solís-Chagoyán H. 2016. The microtubular cytoskeleton of olfactory neurons derived from patients with schizophrenia or with bipolar disorder: implications for biomarker characterization, neuronal physiology and pharmacological screening. Mol Cell Neurosci. 73:84–95. doi: 10.1016/j.mcn.2016.01.013.
  • Ben-Shachar D, Karry R. 2007. Sp1 expression is disrupted in schizophrenia; a possible mechanism for the abnormal expression of mitochondrial complex I genes, NDUFV1 and NDUFV2. PLoS One. 2(9):e817. doi: 10.1371/journal.pone.0000817.
  • Ben-Shachar D, Karry R. 2008. Neuroanatomical pattern of mitochondrial complex I pathology varies between schizophrenia, bipolar disorder and major depression. PLoS ONE. 3(11):e3676. doi: 10.1371/journal.pone.0003676.
  • Bergman O, Karry R, Milhem J, Ben-Shachar D. 2018. NDUFV2 pseudogene (NDUFV2P1) contributes to mitochondrial complex I deficits in schizophrenia. Mol Psychiatry. 25(4):805–820. doi: 10.1038/s41380-018-0309-9.
  • Bernal A, Arranz L. 2018. Nestin-expressing progenitor cells: function, identity and therapeutic implications. Cell Mol Life Sci. 75(12):2177–2195. doi: 10.1007/s00018-018-2794-z.
  • Boksa P. 2008. Maternal infection during pregnancy and schizophrenia. J Psychiatry Neurosci. 33(3):183–185.
  • Brennand KJ, Landek-Salgado MA, Sawa A. 2014. Modeling heterogeneous patients with a clinical diagnosis of schizophrenia with induced pluripotent stem cells. Biol Psychiatry. 75(12):936–944. doi: 10.1016/j.biopsych.2013.10.025.
  • Cavelier L, Jazin EE, Eriksson I, Prince J, Båve U, Oreland L, Gyllensten U. 1995. Decreased cytochrome-c oxidase activity and lack of age-related accumulation of mitochondrial DNA deletions in the brains of schizophrenics. Genomics. 29(1):217–224. doi: 10.1006/geno.1995.1234.
  • Chan SKW, Chan SWY, Pang HH, Yan KK, Hui CLM, Chang WC, Lee EHM, Chen EYH. 2018. Association of an early intervention service for psychosis with suicide rate among patients with first-episode schizophrenia-spectrum disorders. JAMA Psychiatry. 75(5):458–464. doi: 10.1001/jamapsychiatry.2018.0185.
  • Chao C-C, Shen P-W, Tzeng T-Y, Kung H-J, Tsai T-F, Wong Y-H. 2021. Human iPSC-derived neurons as a platform for deciphering the mechanisms behind brain aging. Biomedicines. 9(11):1635. doi: 10.3390/biomedicines9111635.
  • Cloutier M, Aigbogun MS, Guerin A, Nitulescu R, Ramanakumar AV, Kamat SA, DeLucia M, Duffy R, Legacy SN, Henderson C, et al. 2016. The economic burden of schizophrenia in the United States in 2013. J Clin Psychiatry. 77(6):764–771. doi: 10.4088/JCP.15m10278.
  • Comer AL, Carrier M, Tremblay M-È, Cruz-Martín A. 2020. The inflamed brain in schizophrenia: the convergence of genetic and environmental risk factors that lead to uncontrolled neuroinflammation. Front Cell Neurosci. 14:274. doi: 10.3389/fncel.2020.00274.
  • Costa R, Peruzzo R, Bachmann M, Montà GD, Vicario M, Santinon G, Mattarei A, Moro E, Quintana-Cabrera R, Scorrano L, et al. 2019. Impaired mitochondrial ATP production downregulates Wnt signaling via ER stress induction. Cell Rep. 28(8):1949–1960.e6. doi: 10.1016/j.celrep.2019.07.050.
  • De Kumar B, Parker HJ, Parrish ME, Lange JJ, Slaughter BD, Unruh JR, Paulson A, Krumlauf R. 2017. Dynamic regulation of nanog and stem cell-signaling pathways by Hoxa1 during early neuro-ectodermal differentiation of ES cells. Proc Natl Acad Sci USA. 114(23):5838–5845. doi: 10.1073/pnas.1610612114.
  • Deicken RF, Johnson C, Eliaz Y, Schuff N. 2000. Reduced concentrations of thalamic N-acetylaspartate in male patients with schizophrenia. Am J Psychiatry. 157(4):644–647. doi: 10.1176/appi.ajp.157.4.644.
  • Denoth-Lippuner A, Jessberger S. 2021. Formation and integration of new neurons in the adult hippocampus. Nat Rev Neurosci. 22(4):223–236. doi: 10.1038/s41583-021-00433-z.
  • Dixon L. 2017. What it will take to make coordinated specialty care available to anyone experiencing early schizophrenia: getting over the hump. JAMA Psychiatry. 74(1):7–8. doi: 10.1001/jamapsychiatry.2016.2665.
  • Evgrafov OV, Armoskus C, Wrobel BB, Spitsyna VN, Souaiaia T, Herstein JS, Walker CP, Nguyen JD, Camarena A, Weitz JR, et al. 2020. Gene expression in patient-derived neural progenitors implicates WNT5A signaling in the etiology of schizophrenia. Biol Psychiatry. 88(3):236–247. doi: 10.1016/j.biopsych.2020.01.005.
  • Fujimoto T, Nakano T, Takano T, Hokazono Y, Asakura T, Tsuji T. 1992. Study of chronic schizophrenics using 31P magnetic resonance chemical shift imaging. Acta Psychiatr Scand. 86(6):455–462. doi: 10.1111/j.1600-0447.1992.tb03297.x.
  • Gao J, Liao Y, Qiu M, Shen W. 2020. Wnt/β-catenin signaling in neural stem cell homeostasis and neurological diseases. Neuroscientist. 27(1):58–72. doi: 10.1177/1073858420914509.
  • Habtewold TD, Rodijk LH, Liemburg EJ, Sidorenkov G, Boezen HM, Bruggeman R, Alizadeh BZ. 2020. A systematic review and narrative synthesis of data-driven studies in schizophrenia symptoms and cognitive deficits. Transl Psychiatry. 10(1):244. doi: 10.1038/s41398-020-00919-x.
  • Hirabayashi Y, Itoh Y, Tabata H, Nakajima K, Akiyama T, Masuyama N, Gotoh Y. 2004. The Wnt/β-catenin pathway directs neuronal differentiation of cortical neural precursor cells. Development. 131(12):2791–2801. doi: 10.1242/dev.01165.
  • Hjorthøj C, Stürup AE, McGrath JJ, Nordentoft M. 2017. Years of potential life lost and life expectancy in schizophrenia: a systematic review and meta-analysis. Lancet Psychiatry. 4(4):295–301. doi: 10.1016/S2215-0366(17)30078-0.
  • Horrobin DF. 1998. The membrane phospholipid hypothesis as a biochemical basis for the neurodevelopmental concept of schizophrenia. Schizophr Res. 30(3):193–208. doi: 10.1016/s0920-9964(97)00151-5.
  • Horsdal HT, Agerbo E, McGrath JJ, Vilhjálmsson BJ, Antonsen S, Closter AM, Timmermann A, Grove J, Mok PLH, Webb RT, et al. 2019. Association of childhood exposure to nitrogen dioxide and polygenic risk score for schizophrenia with the risk of developing schizophrenia. JAMA Netw Open. 2(11):e1914401. doi: 10.1001/jamanetworkopen.2019.14401.
  • Idotta C, Tibaldi E, Brunati AM, Pagano MA, Cadamuro M, Miola A, Martini A, Favaretto N, Cazzador D, Favaro A, et al. 2019. Olfactory neuroepithelium alterations and cognitive correlates in schizophrenia. Eur Psychiatry. 61:23–32. doi: 10.1016/j.eurpsy.2019.06.004.
  • Iwamoto K, Bundo M, Kato T. 2005. Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet. 14(2):241–253. doi: 10.1093/hmg/ddi022.
  • Jenkins BW, Khokhar JY. 2021. Cannabis use and mental illness: understanding circuit dysfunction through preclinical models. Front Psychiatry. 12:597725. doi: 10.3389/fpsyt.2021.597725.
  • Jin H, Mosweu I. 2017. The societal cost of schizophrenia: a systematic review. Pharmacoeconomics. 35(1):25–42. doi: 10.1007/s40273-016-0444-6.
  • Kahn RS, Sommer IE, Murray RM, Meyer-Lindenberg A, Weinberger DR, Cannon TD, O'Donovan M, Correll CU, Kane JM, van Os J, et al. 2015. Schizophrenia. Nat Rev Dis Primers. 1(1):15067. doi: 10.1038/nrdp.2015.67.
  • Karry R, Klein E, Ben Shachar D. 2004. Mitochondrial complex I subunits expression is altered in schizophrenia: a postmortem study. Biol Psychiatry. 55(7):676–684. doi: 10.1016/j.biopsych.2003.12.012.
  • Khandaker GM, Zimbron J, Lewis G, Jones PB. 2012. Prenatal maternal infection, neurodevelopment and adult schizophrenia: a systematic review of population-based studies. Psychol Med. 43(2):239–257. doi: 10.1017/s0033291712000736.
  • Kim JB, Sebastiano V, Wu G, Araúzo-Bravo MJ, Sasse P, Gentile L, Ko K, Ruau D, Ehrich M, van den Boom D, et al. 2009. Oct4-induced pluripotency in adult neural stem cells. Cell. 136(3):411–419. doi: 10.1016/j.cell.2009.01.023.
  • Kleinman JE, Law AJ, Lipska BK, Hyde TM, Ellis JK, Harrison PJ, Weinberger DR. 2011. Genetic neuropathology of schizophrenia: new approaches to an old question and new uses for postmortem human brains. Biol Psychiatry. 69(2):140–145. doi: 10.1016/j.biopsych.2010.10.032.
  • Konradi C, Öngür D. 2017. Role of mitochondria and energy metabolism in schizophrenia and psychotic disorders. Schizophr Res. 187:1–2. doi: 10.1016/j.schres.2017.07.007.
  • Kraguljac NV, Reid M, White D, Jones R, den Hollander J, Lowman D, Lahti AC. 2012. Neurometabolites in schizophrenia and bipolar disorder – a systematic review and meta-analysis. Psychiatry Res. 203(2–3):111–125. doi: 10.1016/j.pscychresns.2012.02.003.
  • Kriska J, Janeckova L, Kirdajova D, Honsa P, Knotek T, Dzamba D, Kolenicova D, Butenko O, Vojtechova M, Capek M, et al. 2021. Wnt/β-catenin signaling promotes differentiation of ischemia-activated adult neural stem/progenitor cells to neuronal precursors. Front Neurosci. 15:628983. doi: 10.3389/fnins.2021.628983.
  • Langova V, Vales K, Horka P, Horacek J. 2020. The role of zebrafish and laboratory rodents in schizophrenia research. Front Psychiatry. 11:703. doi: 10.3389/fpsyt.2020.00703.
  • Larijani B, Parhizkar Roudsari P, Hadavandkhani M, Alavi-Moghadam S, Rezaei-Tavirani M, Goodarzi P, Sayahpour FA, Mohamadi-Jahani F, Arjmand B. 2021. Stem cell-based models and therapies: a key approach into schizophrenia treatment. Cell Tissue Bank. 22(2):207–223. doi: 10.1007/s10561-020-09888-3.
  • Lavoie J, Gassó Astorga P, Segal-Gavish H, Wu YC, Chung Y, Cascella NG, Sawa A, Ishizuka K. 2017. The olfactory neural epithelium as a tool in neuroscience. Trends Mol Med. 23(2):100–103. doi: 10.1016/j.molmed.2016.12.010.
  • Lee HJ, Baek SS. 2017. Role of exercise on molecular mechanisms in the regulation of antidepressant effects. J Exerc Rehabil. 13(6):617–620. doi: 10.12965/jer.1735188.594.
  • Lin C, Zhang X, Jin H. 2023. The societal cost of schizophrenia: an updated systematic review of cost-of-illness studies. Pharmacoeconomics. 41(2):139–153. doi: 10.1007/s40273-022-01217-8.
  • Mackay-Sim A. 2012. Concise review: patient-derived olfactory stem cells: new models for brain diseases. Stem Cells. 30(11):2361–2365. doi: 10.1002/stem.1220.
  • McCutcheon RA, Reis Marques T, Howes OD. 2020. Schizophrenia—an overview. JAMA Psychiatry. 77(2):201–210. doi: 10.1001/jamapsychiatry.2019.3360.
  • Meffre D, Grenier J, Bernard S, Courtin F, Dudev T, Shackleford G, Jafarian-Tehrani M, Massaad C. 2013. Wnt and lithium: a common destiny in the therapy of nervous system pathologies? Cell Mol Life Sci. 71(7):1123–1148. doi: 10.1007/s00018-013-1378-1.
  • Moslem M, Olive J, Falk A. 2019. Stem cell models of schizophrenia, what have we learned and what is the potential? Schizophr Res. 210:3–12. doi: 10.1016/j.schres.2018.12.023.
  • Nakamura Y, Yamamoto M, Oda E, Yamamoto A, Kanemura Y, Hara M, Suzuki A, Yamasaki M, Okano H. 2003. Expression of tubulin beta II in neural stem/progenitor cells and radial fibers during human fetal brain development. Lab Invest. 83(4):479–489. doi: 10.1097/01.lab.0000063930.75913.b3.
  • Otsuki L, Brand AH. 2020. Quiescent neural stem cells for brain repair and regeneration: lessons from model systems. Trends Neurosci. 43(4):213–226. doi: 10.1016/j.tins.2020.02.002.
  • Perkins DO, Jeffries CD, Do KQ. 2020. Potential roles of redox dysregulation in the development of schizophrenia. Biol Psychiatry. 88(4):326–336. doi: 10.1016/j.biopsych.2020.03.016.
  • Piccin D, Morshead CM. 2011. Wnt signaling regulates symmetry of division of neural stem cells in the adult brain and in response to injury. Stem Cells. 29(3):528–538. doi: 10.1002/stem.589.
  • Pruett BS, Meador-Woodruff JH. 2020. Evidence for altered energy metabolism, increased lactate, and decreased pH in schizophrenia brain: a focused review and meta-analysis of human postmortem and magnetic resonance spectroscopy studies. Schizophr Res. 223:29–42. doi: 10.1016/j.schres.2020.09.003.
  • Qu Q, Sun G, Li W, Yang S, Ye P, Zhao C, Yu RT, Gage FH, Evans RM, Shi Y. 2009. Orphan nuclear receptor TLX activates wnt/β-catenin signalling to stimulate neural stem cell proliferation and self-renewal. Nat Cell Biol. 12(1):31–40. doi: 10.1038/ncb2001.
  • Rebouças DB, Sartori JM, Librenza-Garcia D, Rabelo-da-Ponte FD, Massuda R, Czepielewski LS, Passos IC, Gama CS. 2021. Accelerated aging signatures in subjects with schizophrenia and their unaffected siblings. J Psychiatr Res. 139:30–37. doi: 10.1016/j.jpsychires.2021.04.029.
  • Roberts RC. 2021. Mitochondrial dysfunction in schizophrenia: with a focus on postmortem studies. Mitochondrion. 56:91–101. doi: 10.1016/j.mito.2020.11.009.
  • Rosenbloom AB, Tarczyński M, Lam N, Kane RS, Bugaj LJ, Schaffer DV. 2020. β-catenin signaling dynamics regulate cell fate in differentiating neural stem cells. Proc Natl Acad Sci USA. 117(46):28828–28837. doi: 10.1073/pnas.2008509117.
  • Ross BM, Hudson C, Erlich J, Warsh JJ, Kish SJ. 1997. Increased phospholipid breakdown in schizophrenia. Evidence for the involvement of a calcium-independent phospholipase A2. Arch Gen Psychiatry. 54(5):487–494. doi: 10.1001/archpsyc.1997.01830170113015.
  • Skene NG, Bryois J, Bakken TE, Breen G, Crowley JJ, Gaspar HA, Giusti-Rodriguez P, Hodge RD, Miller JA, Muñoz-Manchado AB, et al. 2018. Genetic identification of brain cell types underlying schizophrenia. Nat Genet. 50(6):825–833. doi: 10.1038/s41588-018-0129-5.
  • Smigielski L, Jagannath V, Rössler W, Walitza S, Grünblatt E. 2020. Epigenetic mechanisms in schizophrenia and other psychotic disorders: a systematic review of empirical human findings. Mol Psychiatry. 25(8):1718–1748. doi: 10.1038/s41380-019-0601-3.
  • Tebbenkamp ATN, Willsey AJ, State MW, Sestan N. 2014. The developmental transcriptome of the human brain. Curr Opin Neurol. 27(2):149–156. doi: 10.1097/wco.0000000000000069.
  • Unzueta-Larrinaga P, Barrena-Barbadillo R, Ibarra-Lecue I, Horrillo I, Villate A, Recio M, Meana JJ, Diez-Alarcia R, Mentxaka O, Segarra R, et al. 2023. Isolation and differentiation of neurons and glial cells from olfactory epithelium in living subjects. Mol Neurobiol. 60(8):4472–4487. doi: 10.1007/s12035-023-03363-2.
  • Volz H-P, Riehemann S, Maurer I, Smesny S, Sommer M, Rzanny R, Holstein W, Czekalla J, Sauer H. 2000. Reduced phosphodiesters and high-energy phosphates in the frontal lobe of schizophrenic patients: a 31P chemical shift spectroscopic-imaging study. Biol Psychiatry. 47(11):954–961. doi: 10.1016/s0006-3223(00)00235-3.
  • Wang Y-Z, Yamagami T, Gan Q, Wang Y, Zhao T, Hamad S, Lott P, Schnittke N, Schwob JE, Zhou CJ. 2011. Canonical Wnt signaling promotes the proliferation and neurogenesis of peripheral olfactory stem cells during postnatal development and adult regeneration. J Cell Sci. 124(Pt 9):1553–1563. doi: 10.1242/jcs.080580.
  • Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, Charlson FJ, Norman RE, Flaxman AD, Johns N, et al. 2013. Global burden of disease attributable to mental and substance use disorders: findings from the global burden of disease study 2010. Lancet. 382(9904):1575–1586. doi: 10.1016/s0140-6736(13)61611-6.
  • Williams SE, Mealer RG, Scolnick EM, Smoller JW, Cummings RD. 2020. Aberrant glycosylation in schizophrenia: a review of 25 years of post-mortem brain studies. Mol Psychiatry. 25(12):3198–3207. doi: 10.1038/s41380-020-0761-1.
  • Zhang S, Cui W. 2014. Sox2, a key factor in the regulation of pluripotency and neural differentiation. World J Stem Cells. 6(3):305–311. doi: 10.4252/wjsc.v6.i3.305.
  • Zhang L, Yang X, Yang S, Zhang J. 2010. The Wnt /β-catenin signaling pathway in the adult neurogenesis. Eur J Neurosci. 33(1):1–8. doi: 10.1111/j.1460-9568.2010.7483.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.