201
Views
0
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Optimisation of pharmacotherapy in psychiatry through therapeutic drug monitoring, molecular brain imaging and pharmacogenetic tests: focus on antipsychotics

, , , , , , , , , ORCID Icon, , , , , , , , , , , , ORCID Icon, ORCID Icon, , , , , , , , , , & show all
Received 04 Nov 2023, Accepted 06 Jun 2024, Accepted author version posted online: 24 Jun 2024
Accepted author version

  • Eap CB, et al. Tools for optimising pharmacotherapy in psychiatry (therapeutic drug monitoring, molecular brain imaging and pharmacogenetic tests): focus on antidepressants. World J Biol Psychiatry. 2021;22(8):561-628.
  • Man PL, et al. Plasma levels of neuroleptics vs clinical response. Psychosomatics. 1978;19(3):151-159.
  • Curry SH, et al. Chlorpromazine plasma levels and effects. Arch Gen Psychiatry. 1970;22(4):289-296.
  • Simpson GM, et al. Clozapine plasma levels and convulsions. Am J Psychiatry. 1978;135(1):99-100.
  • Ackenheil M, et al. [Antipsychotic efficacy in relation to plasma levels of clozapine (author's transl)]. Arzneimittelforschung. 1976;26(6):1156-1158.
  • Wang ZR, et al. Determination of clozapine and its metabolites in serum and urine by reversed phase HPLC. Biomed Chromatogr. 1986;1(2):53-57.
  • Haring C, et al. Clozapine plasma levels determined by high-performance liquid chromatography with ultraviolet detection. J Chromatogr. 1988;428(1):160-166.
  • Lovdahl MJ, et al. The assay of clozapine and N-desmethylclozapine in human plasma by high-performance liquid chromatography. Ther Drug Monit. 1991;13(1):69-72.
  • Weigmann H, et al. Determination of clozapine and its major metabolites in human serum using automated solid-phase extraction and subsequent isocratic high-performance liquid chromatography with ultraviolet detection. J Chromatogr. 1992;583(2):209-216.
  • Jerling M, et al. Fluvoxamine inhibition and carbamazepine induction of the metabolism of clozapine: evidence from a therapeutic drug monitoring service. Ther Drug Monit. 1994;16(4):368-374.
  • Hiemke C, et al. Elevated levels of clozapine in serum after addition of fluvoxamine. J Clin Psychopharmacol. 1994;14(4):279-281.
  • Haring C, et al. Dose-related plasma levels of clozapine: influence of smoking behaviour, sex and age. Psychopharmacology (Berl). 1989;99 Suppl:S38-40.
  • Zullino DF, et al. Tobacco and cannabis smoking cessation can lead to intoxication with clozapine or olanzapine. Int Clin Psychopharmacol. 2002;17(3):141-143.
  • Tio N, et al. Clozapine Intoxication in COVID-19. Am J Psychiatry. 2021;178(2):123-127.
  • de Leon J, et al. An International Adult Guideline for Making Clozapine Titration Safer by Using Six Ancestry-Based Personalized Dosing Titrations, CRP, and Clozapine Levels. Pharmacopsychiatry. 2022;55(2):73-86.
  • Aravagiri M, et al. Determination of risperidone in plasma by high-performance liquid chromatography with electrochemical detection: application to therapeutic drug monitoring in schizophrenic patients. J Pharm Sci. 1993;82(5):447-449.
  • Perry PJ, et al. Olanzapine plasma concentrations and clinical response: acute phase results of the North American Olanzapine Trial. J Clin Psychopharmacol. 2001;21(1):14-20.
  • Scherf-Clavel M, et al. Behind the Curtain: Therapeutic Drug Monitoring of Psychotropic Drugs from a Laboratory Analytical Perspective. Ther Drug Monit. 2023.
  • Grunze H Measuring serum concentrations of psychotropics- Valuable tool for decision making or waste of money? Eur Neuropsychopharmacol. 2023;76:20-22.
  • Lader M Monitoring plasma concentrations of neuroleptics. Pharmakopsychiatr Neuropsychopharmakol. 1976;9(4):170-177.
  • Bengtsson F Therapeutic drug monitoring of psychotropic drugs. TDM “nouveau”. Ther Drug Monit. 2004;26(2):145-151.
  • Dahl SG Plasma level monitoring of antipsychotic drugs. Clinical utility. Clin Pharmacokinet. 1986;11(1):36-61.
  • Ulrich S, et al. The relationship between serum concentration and therapeutic effect of haloperidol in patients with acute schizophrenia. Clin Pharmacokinet. 1998;34(3):227-263.
  • Yasui-Furukori N, et al. Clinical response to risperidone in relation to plasma drug concentrations in acutely exacerbated schizophrenic patients. J Psychopharmacol. 2010;24(7):987-994.
  • Perry PJ, et al. Olanzapine plasma concentrations and clinical response in acutely ill schizophrenic patients. J Clin Psychopharmacol. 1997;17(6):472-477.
  • Mauri MC, et al. Two weeks' quetiapine treatment for schizophrenia, drug-induced psychosis and borderline personality disorder: a naturalistic study with drug plasma levels. Expert Opin Pharmacother. 2007;8(14):2207-2213.
  • Wesner K, et al. Therapeutic Reference Range for Olanzapine in Schizophrenia: Systematic Review on Blood Concentrations, Clinical Effects, and Dopamine Receptor Occupancy. J Clin Psychiatry. 2023;84(5).
  • Balant-Gorgia AE, et al. Antipsychotic drugs. Clinical pharmacokinetics of potential candidates for plasma concentration monitoring. Clin Pharmacokinet. 1987;13(2):65-90.
  • Hiemke C Concentration-Effect Relationships of Psychoactive Drugs and the Problem to Calculate Therapeutic Reference Ranges. Ther Drug Monit. 2019;41(2):174-179.
  • Preskorn SH Therapeutic Drug Monitoring (TDM) in psychiatry (part I): why studies attempting to correlate drug concentration and antidepressant response don't work. J Psychiatr Pract. 2014;20(2):133-137.
  • Lin SK, et al. Aripiprazole and dehydroaripiprazole plasma concentrations and clinical responses in patients with schizophrenia. J Clin Psychopharmacol. 2011;31(6):758-762.
  • Hiemke C, et al. Consensus Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology: Update 2017. Pharmacopsychiatry. 2018;51(1-02):e1.
  • Svestka J, et al. Nonadherence to antipsychotic treatment in patients with schizophrenic disorders. Neuro Endocrinol Lett. 2007;28 Suppl 1:95-116.
  • Lieberman JA, et al. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med. 2005;353(12):1209-1223.
  • Higashi K, et al. Medication adherence in schizophrenia: factors influencing adherence and consequences of nonadherence, a systematic literature review. Ther Adv Psychopharmacol. 2013;3(4):200-218.
  • Velligan DI, et al. Why do psychiatric patients stop antipsychotic medication? A systematic review of reasons for nonadherence to medication in patients with serious mental illness. Patient Prefer Adherence. 2017;11:449-468.
  • Eilers R Therapeutic drug monitoring for the treatment of psychiatric disorders. Clinical use and cost effectiveness. Clin Pharmacokinet. 1995;29(6):442-450.
  • Grundmann M, et al. Therapeutic drug monitoring of atypical antipsychotic drugs. Acta Pharm. 2014;64(4):387-401.
  • Fekete S, et al. Serious Adverse Drug Reactions to Antipsychotics in Minors with Multiple Disabilities: Preventability and Potential Cost Savings by Therapeutic Drug Monitoring. Pharmacopsychiatry. 2023;56(1):32-39.
  • Gaertner I, et al. Therapeutic drug monitoring of clozapine in relapse prevention: a five-year prospective study. J Clin Psychopharmacol. 2001;21(3):305-310.
  • Stieffenhofer V, et al. Clozapine plasma level monitoring for prediction of rehospitalization schizophrenic outpatients. Pharmacopsychiatry. 2011;44(2):55-59.
  • Ulrich S, et al. Therapeutic drug monitoring of clozapine and relapse–a retrospective study of routine clinical data. Int J Clin Pharmacol Ther. 2003;41(1):3-13.
  • Xiang YQ, et al. Serum concentrations of clozapine and norclozapine in the prediction of relapse of patients with schizophrenia. Schizophr Res. 2006;83(2-3):201-210.
  • Beunk L, et al. Dutch Pharmacogenetics Working Group (DPWG) guideline for the gene-drug interaction between CYP2D6, CYP3A4 and CYP1A2 and antipsychotics. Eur J Hum Genet. 2023.
  • Table of Pharmacogenetic Associations. Available from: https://www.fda.gov/medical-devices/precision-medicine/table-pharmacogenetic-associations#about.
  • ; Available from: https://www.pharmvar.org/gene/CYP2D6 [accessed 10/08/2023].
  • Gaedigk A, et al. Prediction of CYP2D6 phenotype from genotype across world populations. Genet Med. 2017;19(1):69-76.
  • Jaquenoud Sirot E, et al. Therapeutic drug monitoring and pharmacogenetic tests as tools in pharmacovigilance. Drug Saf. 2006;29(9):735-768.
  • Lenk H, et al. The Polymorphic Nuclear Factor NFIB Regulates Hepatic CYP2D6 Expression and Influences Risperidone Metabolism in Psychiatric Patients. Clin Pharmacol Ther. 2022;111(5):1165-1174.
  • Bosilkovska M, et al. Geneva cocktail for cytochrome p450 and P-glycoprotein activity assessment using dried blood spots. Clin Pharmacol Ther. 2014;96(3):349-359.
  • Tracy TS, et al. Interindividual Variability in Cytochrome P450-Mediated Drug Metabolism. Drug Metab Dispos. 2016;44(3):343-351.
  • Zubiaur P, et al. Variants in COMT, CYP3A5, CYP2B6, and ABCG2 Alter Quetiapine Pharmacokinetics. Pharmaceutics. 2021;13(10).
  • Dobrinas M, et al. Impact of Smoking, Smoking Cessation, and Genetic Polymorphisms on CYP1A2 Activity and Inducibility. Clinical Pharmacology & Therapeutics. 2011;90(1):117-125.
  • Dobrinas M, et al. Influence of cytochrome P450 oxidoreductase genetic polymorphisms on CYP1A2 activity and inducibility by smoking. Pharmacogenet Genomics. 2012;22(2):143-151.
  • Dobrinas M, et al. Pharmacogenetics of CYP1A2 activity and inducibility in smokers and exsmokers. Pharmacogenet Genomics. 2013;23(5):286-292.
  • Pardiñas AF, et al. Pharmacogenomic Variants and Drug Interactions Identified Through the Genetic Analysis of Clozapine Metabolism. Am J Psychiatry. 2019;176(6):477-486.
  • Pardiñas AF, et al. Pharmacokinetics and pharmacogenomics of clozapine in an ancestrally diverse sample: a longitudinal analysis and genome-wide association study using UK clinical monitoring data. Lancet Psychiatry. 2023;10(3):209-219.
  • Tunbridge EM, et al. Which dopamine polymorphisms are functional? Systematic review and meta-analysis of COMT, DAT, DBH, DDC, DRD1–5, MAOA, MAOB, TH, VMAT1, and VMAT2. Biological Psychiatry. 2019;86(8):608-620.
  • Moyer RA, et al. Intronic polymorphisms affecting alternative splicing of human dopamine D2 receptor are associated with cocaine abuse. Neuropsychopharmacology. 2011;36(4):753-762.
  • Eisenstein SA, et al. Preliminary evidence that negative symptom severity relates to multilocus genetic profile for dopamine signaling capacity and D2 receptor binding in healthy controls and in schizophrenia. J Psychiatr Res. 2017;86:9-17.
  • Allen JD, et al. A systematic review of genome-wide association studies of antipsychotic response. Pharmacogenomics. 2019;20(4):291-306.
  • Koromina M, et al. Delineating significant genome-wide associations of variants with antipsychotic and antidepressant treatment response: implications for clinical pharmacogenomics. Hum Genomics. 2020;14(1):4.
  • Zhang JP, et al. Schizophrenia Polygenic Risk Score as a Predictor of Antipsychotic Efficacy in First-Episode Psychosis. Am J Psychiatry. 2019;176(1):21-28.
  • Chen J, et al. Polygenic Risk Scores for Subtyping of Schizophrenia. Schizophr Res Treatment. 2020;2020:1638403.
  • Santoro ML, et al. Polygenic risk score analyses of symptoms and treatment response in an antipsychotic-naive first episode of psychosis cohort. Transl Psychiatry. 2018;8(1):174.
  • Werner MCF, et al. Indicated association between polygenic risk score and treatment-resistance in a naturalistic sample of patients with schizophrenia spectrum disorders. Schizophr Res. 2020;218:55-62.
  • Pardiñas AF, et al. Interaction Testing and Polygenic Risk Scoring to Estimate the Association of Common Genetic Variants With Treatment Resistance in Schizophrenia. JAMA Psychiatry. 2022;79(3):260-269.
  • Wimberley T, et al. Polygenic Risk Score for Schizophrenia and Treatment-Resistant Schizophrenia. Schizophr Bull. 2017;43(5):1064-1069.
  • Kappel DB, et al. Genomic Stratification of Clozapine Prescription Patterns Using Schizophrenia Polygenic Scores. Biol Psychiatry. 2023;93(2):149-156.
  • Farde L, et al. Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Arch Gen Psychiatry. 1992;49(7):538-544.
  • Farde L, et al. Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Arch Gen Psychiatry. 1988;45(1):71-76.
  • Chouinard G, et al. A Canadian multicenter placebo-controlled study of fixed doses of risperidone and haloperidol in the treatment of chronic schizophrenic patients. J Clin Psychopharmacol. 1993;13(1):25-40.
  • Farde L, et al. Positron emission tomography studies on D2 and 5-HT2 receptor binding in risperidone-treated schizophrenic patients. J Clin Psychopharmacol. 1995;15(1 Suppl 1):19s-23s.
  • Wong DF, et al. The role of imaging in proof of concept for CNS drug discovery and development. Neuropsychopharmacology. 2009;34(1):187-203.
  • Wolkin A, et al. Dopamine blockade and clinical response: evidence for two biological subgroups of schizophrenia. Am J Psychiatry. 1989;146(7):905-908.
  • Gründer G, et al. The striatal and extrastriatal D2/D3 receptor-binding profile of clozapine in patients with schizophrenia. Neuropsychopharmacology. 2006;31(5):1027-1035.
  • Vernaleken I, et al. Dopamine D2/3 receptor occupancy by quetiapine in striatal and extrastriatal areas. Int J Neuropsychopharmacol. 2010;13(7):951-960.
  • Girgis RR, et al. A positron emission tomography occupancy study of brexpiprazole at dopamine D(2) and D(3) and serotonin 5-HT(1A) and 5-HT(2A) receptors, and serotonin reuptake transporters in subjects with schizophrenia. Neuropsychopharmacology. 2020;45(5):786-792.
  • Girgis RR, et al. Preferential binding to dopamine D3 over D2 receptors by cariprazine in patients with schizophrenia using PET with the D3/D2 receptor ligand [(11)C]-(+)-PHNO. Psychopharmacology (Berl). 2016;233(19-20):3503-3512.
  • Yokoi F, et al. Dopamine D2 and D3 receptor occupancy in normal humans treated with the antipsychotic drug aripiprazole (OPC 14597): a study using positron emission tomography and [11C]raclopride. Neuropsychopharmacology. 2002;27(2):248-259.
  • Gründer G, et al. Brain and plasma pharmacokinetics of aripiprazole in patients with schizophrenia: an [18F]fallypride PET study. Am J Psychiatry. 2008;165(8):988-995.
  • Gründer G, et al. Therapeutic plasma concentrations of antidepressants and antipsychotics: lessons from PET imaging. Pharmacopsychiatry. 2011;44(6):236-248.
  • Hart XM, et al. Update Lessons from PET Imaging Part I: A Systematic Critical Review on Therapeutic Plasma Concentrations of Antipsychotics [in press]. Ther Drug Monit. 2023.
  • Tauscher J, et al. Significant dissociation of brain and plasma kinetics with antipsychotics. Mol Psychiatry. 2002;7(3):317-321.
  • Grunder G, et al. Mechanism of new antipsychotic medications: occupancy is not just antagonism. Arch Gen Psychiatry. 2003;60(10):974-977.
  • Kapur S, et al. Relationship between dopamine D(2) occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am J Psychiatry. 2000;157(4):514-520.
  • Hart XM, et al. Update Lessons from PET Imaging Part II: A Systematic Critical Review on Therapeutic Plasma Concentrations of Antidepressants [in press]. Ther Drug Monit. 2023.
  • Brannan SK, et al. Muscarinic Cholinergic Receptor Agonist and Peripheral Antagonist for Schizophrenia. N Engl J Med. 2021;384(8):717-726.
  • Meltzer HY, et al. The ratios of serotonin2 and dopamine2 affinities differentiate atypical and typical antipsychotic drugs. Psychopharmacol Bull. 1989;25(3):390-392.
  • Nordström AL, et al. D1, D2, and 5-HT2 receptor occupancy in relation to clozapine serum concentration: a PET study of schizophrenic patients. Am J Psychiatry. 1995;152(10):1444-1449.
  • Kapur S, et al. 5-HT2 and D2 receptor occupancy of olanzapine in schizophrenia: a PET investigation. Am J Psychiatry. 1998;155(7):921-928.
  • Nyberg S, et al. A PET study of D2 and 5-HT2 receptor occupancy induced by risperidone in poor metabolizers of debrisoquin and risperidone. Psychopharmacology (Berl). 1995;119(3):345-348.
  • Gefvert O, et al. Time course of central nervous dopamine-D2 and 5-HT2 receptor blockade and plasma drug concentrations after discontinuation of quetiapine (Seroquel) in patients with schizophrenia. Psychopharmacology (Berl). 1998;135(2):119-126.
  • Gründer G, et al. The 'atypicality' of antipsychotics: a concept re-examined and re-defined. Nat Rev Drug Discov. 2009;8(3):197-202.
  • Hart XM, et al. Molecular Imaging of Dopamine Partial Agonists in Humans: Implications for Clinical Practice. Front Psychiatry. 2022;13:832209.
  • Radhakrishnan R, et al. In vivo 5-HT(6) and 5-HT(2A) receptor availability in antipsychotic treated schizophrenia patients vs. unmedicated healthy humans measured with [(11)C]GSK215083 PET. Psychiatry Res Neuroimaging. 2020;295:111007.
  • Servonnet A, et al. Antipsychotic-evoked dopamine supersensitivity. Neuropharmacology. 2020;163:107630.
  • Coukell AJ, et al. Amisulpride. CNS Drugs. 1996;6:237-256.
  • Rosenzweig P, et al. A review of the pharmacokinetics, tolerability and pharmacodynamics of amisulpride in healthy volunteers. Hum Psychopharmacol. 2002;17(1):1-13.
  • Glatard A, et al. Amisulpride: Real-World Evidence of Dose Adaptation and Effect on Prolactin Concentrations and Body Weight Gain by Pharmacokinetic/Pharmacodynamic Analyses. Clin Pharmacokinet. 2020;59(3):371-382.
  • Li L, et al. A systematic review and combined meta-analysis of concentration of oral amisulpride. Br J Clin Pharmacol. 2020;86(4):668-678.
  • Acacia Pharma Inc 2020 “Amisulpride: highlights of prescribing information.”.
  • Gentile S Antipsychotic therapy during early and late pregnancy. A systematic review. Schizophr Bull. 2010;36(3):518-544.
  • Habermann F, et al. Atypical antipsychotic drugs and pregnancy outcome: a prospective, cohort study. J Clin Psychopharmacol. 2013;33(4):453-462.
  • Damkier P, et al. The Safety of Second-Generation Antipsychotics During Pregnancy: A Clinically Focused Review. CNS Drugs. 2018;32(4):351-366.
  • CRAT, Etat des connaissances sur l’amisulpride, Editor^Editors.
  • Leucht S, et al. Dose-Response Meta-Analysis of Antipsychotic Drugs for Acute Schizophrenia. Am J Psychiatry. 2020;177(4):342-353.
  • Leucht S, et al. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis. Lancet. 2013;382(9896):951-962.
  • Hoekstra S, et al. Sex differences in antipsychotic efficacy and side effects in schizophrenia spectrum disorder: results from the BeSt InTro study. NPJ Schizophr. 2021;7(1):39.
  • Holt RI, et al. Antipsychotics and hyperprolactinaemia: mechanisms, consequences and management. Clin Endocrinol (Oxf). 2011;74(2):141-147.
  • Drobnis EZ, et al. Psychotropics and Male Reproduction. Adv Exp Med Biol. 2017;1034:63-101.
  • Düring SW, et al. Sexual dysfunction and hyperprolactinemia in schizophrenia before and after six weeks of D(2/3) receptor blockade - An exploratory study. Psychiatry Res. 2019;274:58-65.
  • Sparshatt A, et al. Amisulpride - dose, plasma concentration, occupancy and response: implications for therapeutic drug monitoring. Acta Psychiatr Scand. 2009;120(6):416-428.
  • Müller MJ, et al. Therapeutic drug monitoring for optimizing amisulpride therapy in patients with schizophrenia. J Psychiatr Res. 2007;41(8):673-679.
  • Lako IM, et al. Estimating dopamine D2 receptor occupancy for doses of 8 antipsychotics: a meta-analysis. J Clin Psychopharmacol. 2013;33(5):675-681.
  • Bressan RA, et al. Is regionally selective D2/D3 dopamine occupancy sufficient for atypical antipsychotic effect? an in vivo quantitative [123I]epidepride SPET study of amisulpride-treated patients. Am J Psychiatry. 2003;160(8):1413-1420.
  • Meisenzahl EM, et al. Striatal D2/D3 receptor occupancy, clinical response and side effects with amisulpride: an iodine-123-iodobenzamide SPET study. Pharmacopsychiatry. 2008;41(5):169-175.
  • Xiberas X, et al. In vivo extrastriatal and striatal D2 dopamine receptor blockade by amisulpride in schizophrenia. J Clin Psychopharmacol. 2001;21(2):207-214.
  • Vernaleken I, et al. High striatal occupancy of D2-like dopamine receptors by amisulpride in the brain of patients with schizophrenia. Int J Neuropsychopharmacol. 2004;7(4):421-430.
  • Martinot JL, et al. In vivo characteristics of dopamine D2 receptor occupancy by amisulpride in schizophrenia. Psychopharmacology (Berl). 1996;124(1-2):154-158.
  • Trichard C, et al. Binding of antipsychotic drugs to cortical 5-HT2A receptors: a PET study of chlorpromazine, clozapine, and amisulpride in schizophrenic patients. Am J Psychiatry. 1998;155(4):505-508.
  • Lobo MC, et al. New and emerging treatments for schizophrenia: a narrative review of their pharmacology, efficacy and side effect profile relative to established antipsychotics. Neuroscience & Biobehavioral Reviews. 2022;132:324-361.
  • Costall B, et al. Actions of ORG 5222 as a novel psychotropic agent. Pharmacol Biochem Behav. 1990;35(3):607-615.
  • Protti M, et al. Enantioseparation and determination of asenapine in biological fluid micromatrices by HPLC with diode array detection. J Sep Sci. 2018;41(6):1257-1265.
  • Secuado Full Prescribing Information. 2019 [cited 2022 Nov 11]; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/212268s000lbl.pdf.
  • Shahid M, et al. Asenapine: a novel psychopharmacologic agent with a unique human receptor signature. J Psychopharmacol. 2009;23(1):65-73.
  • Administration USFaD Asenapine Drug Approval Package. 2009.
  • Suzuki K, et al. Pharmacokinetic Profile of the Asenapine Transdermal System (HP-3070). J Clin Psychopharmacol. 2021;41(3):286-294.
  • Gerrits M, et al. Effect of absorption site on the pharmacokinetics of sublingual asenapine in healthy male subjects. Biopharm Drug Dispos. 2010;31(5-6):351-357.
  • Saphris Full Prescribing Information. 2009 [cited 2022 Nov 09]; Available from: www.accessdata.fda.gov/drugsatfda_docs/label/2013/022117s012lbl.pdf.
  • Dogterom P, et al. The effect of food on the high clearance drug asenapine after sublingual administration to healthy male volunteers. Eur J Clin Pharmacol. 2015;71(1):65-74.
  • van de Wetering-Krebbers SF, et al. Metabolism and excretion of asenapine in healthy male subjects. Drug Metab Dispos. 2011;39(4):580-590.
  • Australian Public Assessment Report for Asenapine. [cited 2022 November 09]; Available from: https://www.tga.gov.au/sites/default/files/auspar-saphris.pdf.
  • Gerrits MG, et al. Valproate reduces the glucuronidation of asenapine without affecting asenapine plasma concentrations. J Clin Pharmacol. 2012;52(5):757-765.
  • New Drug Application 22-117 (asenapine). 2008; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2009/022117s000_ClinPharmR_P2.pdf.
  • Wojcikowski J, et al. In vitro inhibition of human cytochrome P450 enzymes by the novel atypical antipsychotic drug asenapine: a prediction of possible drug-drug interactions. Pharmacol Rep. 2020;72(3):612-621.
  • Mandrioli R, et al. Novel Atypical Antipsychotics: Metabolism and Therapeutic Drug Monitoring (TDM). Curr Drug Metab. 2015;16(2):141-151.
  • Peeters P, et al. Asenapine pharmacokinetics in hepatic and renal impairment. Clin Pharmacokinet. 2011;50(7):471-481.
  • Dubovsky SL, et al. Short-term safety and pharmacokinetic profile of asenapine in older patients with psychosis. Int J Geriatr Psychiatry. 2012;27(5):472-482.
  • Ortega-Vázquez A, et al. Influence of genetic variants and antiepileptic drug co-treatment on lamotrigine plasma concentration in Mexican Mestizo patients with epilepsy. Pharmacogenomics J. 2020;20(6):845-856.
  • Andrée B, et al. Central 5-HT2A and D2 dopamine receptor occupancy after sublingual administration of ORG 5222 in healthy men. Psychopharmacology (Berl). 1997;131(4):339-345.
  • de Greef R, et al. Dopamine D2 occupancy as a biomarker for antipsychotics: quantifying the relationship with efficacy and extrapyramidal symptoms. Aaps j. 2011;13(1):121-130.
  • Kane JM, et al. Efficacy and safety of asenapine in a placebo- and haloperidol-controlled trial in patients with acute exacerbation of schizophrenia. J Clin Psychopharmacol. 2010;30(2):106-115.
  • Potkin SG, et al. Efficacy and tolerability of asenapine in acute schizophrenia: a placebo- and risperidone-controlled trial. J Clin Psychiatry. 2007;68(10):1492-1500.
  • Weber J, et al. Asenapine. CNS Drugs. 2009;23(9):781-792.
  • Seiler W, et al. Pharmacokinetics and bioavailability of benperidol in schizophrenic patients after intravenous and two different kinds of oral application. Psychopharmacology (Berl). 1994;116(4):457-463.
  • Cacabelos R, et al. Genomics of schizophrenia and pharmacogenomics of antipsychotic drugs. Open Journal of Psychiatry. 2013;3:46.
  • Laux G, et al., 19 - Neuroleptika/Antipsychotika, in Praktische Psychopharmakotherapie (Sechste Ausgabe), Laux G, et al., Editors. 2012, Urban & Fischer: Munich. p. 191-243.
  • Suss S, et al. Determination of benperidol and its reduced metabolite in human plasma by high-performance liquid chromatography and electrochemical detection. J Chromatogr. 1991;565(1-2):363-373.
  • Schlosser R, et al. [123I]IBZM SPECT in patients treated with typical and atypical neuroleptics: relationship to drug plasma levels and extrapyramidal side effects. Psychiatry Res. 1997;75(2):103-114.
  • Seiler W, et al. Plasma levels of benperidol, prolactin, and homovanillic acid after intravenous versus two different kinds of oral application of the neuroleptic in schizophrenic patients. Exp Clin Endocrinol. 1994;102(4):326-333.
  • Eisenstein SA, et al. Characterization of extrastriatal D2 in vivo specific binding of [18F](N-methyl)benperidol using PET. Synapse. 2012;66(9):770-780.
  • Schröder J, et al. D2 dopamine receptor up-regulation, treatment response, neurological soft signs, and extrapyramidal side effects in schizophrenia: a follow-up study with 123I-iodobenzamide single photon emission computed tomography in the drug-naive state and after neuroleptic treatment. Biol Psychiatry. 1998;43(9):660-665.
  • Criswell SR, et al. Selective D2 receptor PET in manganese-exposed workers. Neurology. 2018;91(11):e1022-e1030.
  • Kitamura A, et al. Pharmacokinetic Evaluation of Blonanserin Transdermal Patch: Population Analysis and Simulation of Plasma Concentration and Dopamine D2 Receptor Occupancy in Clinical Settings. J Clin Pharmacol. 2021;61(8):1069-1080.
  • Tomita Y, et al. Prediction methods of drug-drug interactions of non-oral CYP3A4 substrates based on clinical interaction data after oral administrations - Validation with midazolam, alfentanil, and verapamil after intravenous administration and prediction for blonanserin transdermal patch. Drug Metab Pharmacokinet. 2020;35(4):345-353.
  • Chen X, et al. The pharmacokinetic and safety profiles of blonanserin in healthy Chinese volunteers after single fasting doses and single and multiple postprandial doses. Clin Drug Investig. 2014;34(3):213-222.
  • Wen Y-G, et al. Population pharmacokinetics of blonanserin in Chinese healthy volunteers and the effect of the food intake. Human Psychopharmacology: Clinical and Experimental. 2013;28:134-141.
  • Tateno A, et al. Striatal and extrastriatal dopamine D2 receptor occupancy by a novel antipsychotic, blonanserin: a PET study with [11C]raclopride and [11C]FLB 457 in schizophrenia. J Clin Psychopharmacol. 2013;33(2):162-169.
  • Suzuki H, et al. The relationship between the plasma concentration of blonanserin, and its plasma anti-serotonin 5-HT(2A) activity/anti-dopamine D(2) activity ratio and drug-induced extrapyramidal symptoms. Psychiatry Clin Neurosci. 2012;66(2):146-152.
  • Tateno A, et al. Comparison of Dopamine D3 and D2 Receptor Occupancies by a Single Dose of Blonanserin in Healthy Subjects: A Positron Emission Tomography Study With [11C]-(+)-PHNO. Int J Neuropsychopharmacol. 2018;21(6):522-527.
  • Sakayori T, et al. Evaluation of dopamine D(3) receptor occupancy by blonanserin using [(11)C]-(+)-PHNO in schizophrenia patients. Psychopharmacology (Berl). 2021;238(5):1343-1350.
  • Nishibe H, et al. Striatal Dopamine D2 Receptor Occupancy Induced by Daily Application of Blonanserin Transdermal Patches: Phase II Study in Japanese Patients With Schizophrenia. Int J Neuropsychopharmacol. 2021;24(2):108-117.
  • Tomita Y, et al. Prediction of Corresponding Dose of Transdermal Blonanserin to Oral Dose Based on Dopamine D2 Receptor Occupancy: Unique Characteristics of Blonanserin Transdermal Patch. J Clin Psychopharmacol. 2022;42(3):260-269.
  • Schotte A, et al. In vitro receptor binding and in vivo receptor occupancy in rat and guinea pig brain: risperidone compared with antipsychotics hitherto used. Jpn J Pharmacol. 1995;69(4):399-412.
  • Yasui N, et al. Correlation between steady-state plasma concentrations (Css) of bromperidol and haloperidol. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 1998;22(3):485-492.
  • Suzuki A, et al. Effects of various factors including the CYP2D6 genotype and coadministration of flunitrazepam on the steady-state plasma concentrations of bromperidol and its reduced metabolite. Psychopharmacology (Berl). 1998;135(4):333-337.
  • Patteet L, et al. Therapeutic drug monitoring of common antipsychotics. Ther Drug Monit. 2012;34(6):629-651.
  • Fujii Y, et al. Clinical efficacy, extrapyramidal symptoms and serum levels: influence of administration schedules and concomitant drugs on serum bromperidol concentrations. Folia Psychiatr Neurol Jpn. 1984;38(2):121-136.
  • Someya T, et al. Interindividual variation in bromperidol metabolism and relationship to therapeutic effects. J Clin Psychopharmacol. 2000;20(2):175-180.
  • Yasui N, et al. Prolactin response to bromperidol treatment in schizophrenic patients. Pharmacol Toxicol. 1998;82(3):153-156.
  • Yasui-Furukori N, et al. Therapeutic effects of bromperidol on the five dimensions of schizophrenic symptoms. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26(1):53-57.
  • Yasui-Furukori N, et al. The characteristics of side-effects of bromperidol in schizophrenic patients. Psychiatry Clin Neurosci. 2002;56(1):103-106.
  • Yasui-Furukori N, et al. Association between multidrug resistance 1 (MDR1) gene polymorphisms and therapeutic response to bromperidol in schizophrenic patients: a preliminary study. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30(2):286-291.
  • Sakumoto N, et al. Dopamine D2 receptor gene polymorphisms predict well the response to dopamine antagonists at therapeutic dosages in patients with schizophrenia. Psychiatry Clin Neurosci. 2007;61(2):174-180.
  • Suzuki A, et al. The -141C Ins/Del polymorphism in the dopamine D2 receptor gene promoter region is associated with anxiolytic and antidepressive effects during treatment with dopamine antagonists in schizophrenic patients. Pharmacogenetics. 2001;11(6):545-550.
  • Suzuki A, et al. Association between TaqI A dopamine D2 receptor polymorphism and therapeutic response to bromperidol: a preliminary report. Eur Arch Psychiatry Clin Neurosci. 2001;251(2):57-59.
  • Mihara K, et al. Relationship between Taq1 A dopamine D2 receptor (DRD2) polymorphism and prolactin response to bromperidol. Am J Med Genet. 2001;105(3):271-274.
  • May PR, et al. Chlorpromazine levels and the outcome of treatment in schizophrenic patients. Arch Gen Psychiatry. 1981;38(2):202-207.
  • Chetty M, et al. The use of a side effect as a qualitative indicator of plasma chlorpromazine levels. Eur Neuropsychopharmacol. 1999;9(1-2):77-82.
  • Wode-Helgodt B, et al. Clinical effects and drug concentrations in plasma and cerebrospinal fluid in psychotic patients treated with fixed doses of chlorpromazine. Acta Psychiatr Scand. 1978;58(2):149-173.
  • Rivera-Calimlim L, et al. Clinical response and plasma levels: effect of dose, dosage schedules, and drug interactions on plasma chlorpromazine levels. Am J Psychiatry. 1976;133(6):646-652.
  • Wik G, et al. Effects of sulpiride and chlorpromazine on regional cerebral glucose metabolism in schizophrenic patients as determined by positron emission tomography. Psychopharmacology (Berl). 1989;97(3):309-318.
  • Smith M, et al. Serial [18F]N-methylspiroperidol PET studies to measure changes in antipsychotic drug D-2 receptor occupancy in schizophrenic patients. Biol Psychiatry. 1988;23(7):653-663.
  • von Coburg Y, et al. Potential utility of histamine H3 receptor antagonist pharmacophore in antipsychotics. Bioorg Med Chem Lett. 2009;19(2):538-542.
  • Regenthal R, et al. Drug levels: therapeutic and toxic serum/plasma concentrations of common drugs. J Clin Monit Comput. 1999;15(7-8):529-544.
  • Raaflaub J On the pharmacokinetics of chlorprothixene in man. Experientia. 1975;31(5):557-558.
  • Bader W, et al. Increase of risperidone concentration under chlorprothixene comedication–a case report. Pharmacopsychiatry. 2008;41(3):116-117.
  • Paulzen M, et al. Pharmacokinetic considerations in antipsychotic augmentation strategies: How to combine risperidone with low-potency antipsychotics. Prog Neuropsychopharmacol Biol Psychiatry. 2017;76:101-106.
  • Lundbeck;. Product monograph - Clopixol [30.01.23].
  • Swissmedic. Product monograph - Clopixol [28.06.23].
  • Davies SJ, et al. Characterisation of zuclopenthixol metabolism by in vitro and therapeutic drug monitoring studies. Acta Psychiatr Scand. 2010;122(6):444-453.
  • Tveito M, et al. Impact of age and CYP2D6 genotype on exposure of zuclopenthixol in patients using long-acting injectable versus oral formulation-an observational study including 2044 patients. Eur J Clin Pharmacol. 2021;77(2):215-221.
  • Jaanson P, et al. Maintenance therapy with zuclopenthixol decanoate: associations between plasma concentrations, neurological side effects and CYP2D6 genotype. Psychopharmacology (Berl). 2002;162(1):67-73.
  • Jerling M, et al. The CYP2D6 genotype predicts the oral clearance of the neuroleptic agents perphenazine and zuclopenthixol. Clin Pharmacol Ther. 1996;59(4):423-428.
  • Linnet K, et al. Influence of Cyp2D6 genetic polymorphism on ratios of steady-state serum concentration to dose of the neuroleptic zuclopenthixol. Ther Drug Monit. 1996;18(6):629-634.
  • Waade RB, et al. Impact of CYP2D6 on serum concentrations of flupentixol, haloperidol, perphenazine and zuclopenthixol. Br J Clin Pharmacol. 2021;87(5):2228-2235.
  • Whirl-Carrillo M, et al. An Evidence-Based Framework for Evaluating Pharmacogenomics Knowledge for Personalized Medicine. Clin Pharmacol Ther. 2021;110(3):563-572.
  • Kjølbye M, et al. Search for a therapeutic range for serum zuclopenthixol concentrations in schizophrenic patients. Ther Drug Monit. 1994;16(6):541-547.
  • Jørgensen A, et al. Zuclopenthixol decanoate in schizophrenia: serum levels and clinical state. Psychopharmacology (Berl). 1985;87(3):364-367.
  • Jönsson AK, et al. A Compilation of Serum Concentrations of 12 Antipsychotic Drugs in a Therapeutic Drug Monitoring Setting. Ther Drug Monit. 2019;41(3):348-356.
  • Larsen JB, et al. Automated Interlaboratory Comparison of Therapeutic Drug Monitoring Data and Its Use for Evaluation of Published Therapeutic Reference Ranges. Pharmaceutics. 2023;15(2).
  • Nyberg S, et al. Central D2 receptor occupancy and effects of zuclopenthixol acetate in humans. Int Clin Psychopharmacol. 1995;10(4):221-227.
  • Idänpään-Heikkilä J, et al. Agranulocytosis during treatment with chlozapine. Eur J Clin Pharmacol. 1977;11(3):193-198.
  • Kane J, et al. Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Arch Gen Psychiatry. 1988;45(9):789-796.
  • Claghorn J, et al. The risks and benefits of clozapine versus chlorpromazine. J Clin Psychopharmacol. 1987;7(6):377-384.
  • Clorazil Full Prescribing Information: US Food and Drug Administration 1989.
  • Meltzer HY An overview of the mechanism of action of clozapine. J Clin Psychiatry. 1994;55 Suppl B:47-52.
  • Seeman P, et al. Rapid release of antipsychotic drugs from dopamine D2 receptors: an explanation for low receptor occupancy and early clinical relapse upon withdrawal of clozapine or quetiapine. Am J Psychiatry. 1999;156(6):876-884.
  • Dahl ML, et al. Disposition of clozapine in man: lack of association with debrisoquine and S-mephenytoin hydroxylation polymorphisms. Br J Clin Pharmacol. 1994;37(1):71-74.
  • Cheng YF, et al. Clinical pharmacokinetics of clozapine in chronic schizophrenic patients. Eur J Clin Pharmacol. 1988;34(5):445-449.
  • Choc MG, et al. Multiple-dose pharmacokinetics of clozapine in patients. Pharm Res. 1987;4(5):402-405.
  • Eiermann B, et al. The involvement of CYP1A2 and CYP3A4 in the metabolism of clozapine. Br J Clin Pharmacol. 1997;44(5):439-446.
  • Fang J, et al. Elucidation of individual cytochrome P450 enzymes involved in the metabolism of clozapine. Naunyn Schmiedebergs Arch Pharmacol. 1998;358(5):592-599.
  • Mori A, et al. UDP-glucuronosyltransferase 1A4 polymorphisms in a Japanese population and kinetics of clozapine glucuronidation. Drug Metab Dispos. 2005;33(5):672-675.
  • Sur C, et al. N-desmethylclozapine, an allosteric agonist at muscarinic 1 receptor, potentiates N-methyl-D-aspartate receptor activity. Proc Natl Acad Sci U S A. 2003;100(23):13674-13679.
  • Schoretsanitis G, et al. A comprehensive review of the clinical utility of and a combined analysis of the clozapine/norclozapine ratio in therapeutic drug monitoring for adult patients. Expert Rev Clin Pharmacol. 2019;12(7):603-621.
  • Raaska K, et al. Ciprofloxacin increases serum clozapine and N-desmethylclozapine: a study in patients with schizophrenia. Eur J Clin Pharmacol. 2000;56(8):585-589.
  • Brownlowe K, et al. Clozapine toxicity in smoking cessation and with ciprofloxacin. Psychosomatics. 2008;49(2):176.
  • Sandson NB, et al. Clozapine case series. Psychosomatics. 2007;48(2):170-175.
  • Sambhi RS, et al. Interaction of clozapine and ciprofloxacin: a case report. Eur J Clin Pharmacol. 2007;63(9):895-896.
  • Markowitz JS, et al. Fluoroquinolone inhibition of clozapine metabolism. Am J Psychiatry. 1997;154(6):881.
  • Szegedi A, et al. Addition of low-dose fluvoxamine to low-dose clozapine monotherapy in schizophrenia: drug monitoring and tolerability data from a prospective clinical trial. Pharmacopsychiatry. 1999;32(4):148-153.
  • Chang WH, et al. In-vitro and in-vivo evaluation of the drug-drug interaction between fluvoxamine and clozapine. Psychopharmacology (Berl). 1999;145(1):91-98.
  • Wang CY, et al. The differential effects of steady-state fluvoxamine on the pharmacokinetics of olanzapine and clozapine in healthy volunteers. J Clin Pharmacol. 2004;44(7):785-792.
  • de Leon J Future Studies on the Interaction Between Clozapine and Valproic Acid Should Aspire to Include Longitudinal Designs and Free Valproate Concentrations, and Should Consider that Inducer and/or Inhibitory Effects May Vary With Time, the Individual, and the Auto-Induction of Valproic Acid. Ther Drug Monit. 2020;42(1):159-161.
  • Conca A, et al. A case of pharmacokinetic interference in comedication of clozapine and valproic acid. Pharmacopsychiatry. 2000;33(6):234-235.
  • Longo LP, et al. Valproic acid effects on serum concentrations of clozapine and norclozapine. Am J Psychiatry. 1995;152(4):650.
  • Finley P, et al. Potential impact of valproic acid therapy on clozapine disposition. Biol Psychiatry. 1994;36(7):487-488.
  • Centorrino F, et al. Serum concentrations of clozapine and its major metabolites: effects of cotreatment with fluoxetine or valproate. Am J Psychiatry. 1994;151(1):123-125.
  • Facciolà G, et al. Small effects of valproic acid on the plasma concentrations of clozapine and its major metabolites in patients with schizophrenic or affective disorders. Ther Drug Monit. 1999;21(3):341-345.
  • Tiihonen J, et al. Carbamazepine-induced changes in plasma levels of neuroleptics. Pharmacopsychiatry. 1995;28(1):26-28.
  • Li W, et al. Regulation of cytochrome P450 enzymes by aryl hydrocarbon receptor in human cells: CYP1A2 expression in the LS180 colon carcinoma cell line after treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin or 3-methylcholanthrene. Biochem Pharmacol. 1998;56(5):599-612.
  • Tsuda Y, et al. Meta-analysis: the effects of smoking on the disposition of two commonly used antipsychotic agents, olanzapine and clozapine. BMJ Open. 2014;4(3):e004216.
  • Haslemo T, et al. The effect of variable cigarette consumption on the interaction with clozapine and olanzapine. Eur J Clin Pharmacol. 2006;62(12):1049-1053.
  • Dobrinas M, et al. Impact of smoking, smoking cessation, and genetic polymorphisms on CYP1A2 activity and inducibility. Clin Pharmacol Ther. 2011;90(1):117-125.
  • Hefner G, et al. Inflammation and psychotropic drugs: the relationship between C-reactive protein and antipsychotic drug levels. Psychopharmacology (Berl). 2016;233(9):1695-1705.
  • Pharmacogene Variation Consortium. [cited 2023 12 July]; Available from: https://www.pharmvar.org/.
  • Özdemir V, et al. Treatment-Resistance to Clozapine in Association With Ultrarapid CYP1A2 Activity and the C → A Polymorphism in Intron 1 of the CYP1A2 Gene: Effect of Grapefruit Juice and Low-Dose Fluvoxamine. Journal of Clinical Psychopharmacology. 2001;21(6):603-607.
  • Eap CB, et al. Nonresponse to clozapine and ultrarapid CYP1A2 activity: clinical data and analysis of CYP1A2 gene. J Clin Psychopharmacol. 2004;24(2):214-219.
  • Melkersson KI, et al. Impact of CYP1A2 and CYP2D6 polymorphisms on drug metabolism and on insulin and lipid elevations and insulin resistance in clozapine-treated patients. J Clin Psychiatry. 2007;68(5):697-704.
  • Jaquenoud Sirot E, et al. ABCB1 and cytochrome P450 polymorphisms: clinical pharmacogenetics of clozapine. J Clin Psychopharmacol. 2009;29(4):319-326.
  • van der Weide J, et al. The effect of smoking and cytochrome P450 CYP1A2 genetic polymorphism on clozapine clearance and dose requirement. Pharmacogenetics. 2003;13(3):169-172.
  • Kootstra-Ros JE, et al. The cytochrome P450 CYP1A2 genetic polymorphisms *1F and *1D do not affect clozapine clearance in a group of schizophrenic patients. Ann Clin Biochem. 2005;42(Pt 3):216-219.
  • Ammar H, et al. Clinical and genetic influencing factors on clozapine pharmacokinetics in Tunisian schizophrenic patients. Pharmacogenomics J. 2021;21(5):551-558.
  • Lee ST, et al. Association study of 27 annotated genes for clozapine pharmacogenetics: validation of preexisting studies and identification of a new candidate gene, ABCB1, for treatment response. J Clin Psychopharmacol. 2012;32(4):441-448.
  • Na Takuathung M, et al. Impact of CYP1A2 genetic polymorphisms on pharmacokinetics of antipsychotic drugs: a systematic review and meta-analysis. Acta Psychiatr Scand. 2019;139(1):15-25.
  • Krivoy A, et al. Gene polymorphisms potentially related to the pharmacokinetics of clozapine: a systematic review. Int Clin Psychopharmacol. 2016;31(4):179-184.
  • Smith RL, et al. Identification of a novel polymorphism associated with reduced clozapine concentration in schizophrenia patients-a genome-wide association study adjusting for smoking habits. Transl Psychiatry. 2020;10(1):198.
  • Suetani RJ, et al. Genetic variants impacting metabolic outcomes among people on clozapine: a systematic review and meta-analysis. Psychopharmacology (Berl). 2017;234(20):2989-3008.
  • Li XH, et al. The prevalence of agranulocytosis and related death in clozapine-treated patients: a comprehensive meta-analysis of observational studies. Psychol Med. 2020;50(4):583-594.
  • Islam F, et al. Pharmacogenomics of Clozapine-induced agranulocytosis: a systematic review and meta-analysis. Pharmacogenomics J. 2022;22(4):230-240.
  • van der Horst MZ, et al. Genetic determinants associated with response to clozapine in schizophrenia: an umbrella review. Psychiatr Genet. 2022;32(5):163-170.
  • de Leon J, et al. An International Adult Guideline for Making Clozapine Titration Safer by Using Six Ancestry-Based Personalized Dosing Titrations, CRP, and Clozapine Levels. Pharmacopsychiatry. 2022;55(2):73-86.
  • Perry PJ, et al. Clozapine and norclozapine plasma concentrations and clinical response of treatment-refractory schizophrenic patients. Am J Psychiatry. 1991;148(2):231-235.
  • Miller DD, et al. Plasma clozapine concentrations as a predictor of clinical response: a follow-up study. J Clin Psychiatry. 1994;55 Suppl B:117-121.
  • Potkin SG, et al. Plasma clozapine concentrations predict clinical response in treatment-resistant schizophrenia. J Clin Psychiatry. 1994;55 Suppl B:133-136.
  • Kronig MH, et al. Plasma clozapine levels and clinical response for treatment-refractory schizophrenic patients. Am J Psychiatry. 1995;152(2):179-182.
  • VanderZwaag C, et al. Response of patients with treatment-refractory schizophrenia to clozapine within three serum level ranges. Am J Psychiatry. 1996;153(12):1579-1584.
  • Liu HC, et al. Monitoring of plasma clozapine levels and its metabolites in refractory schizophrenic patients. Ther Drug Monit. 1996;18(2):200-207.
  • Tralongo F, et al. Association Between Clozapine Plasma Concentrations and Treatment Response: A Systematic Review, Meta-analysis and Individual Participant Data Meta-analysis. Clin Pharmacokinet. 2023;62(6):807-818.
  • Freudenreich O, et al. Clozapine-induced electroencephalogram changes as a function of clozapine serum levels. Biol Psychiatry. 1997;42(2):132-137.
  • Olesen OV, et al. Clozapine serum levels and side effects during steady state treatment of schizophrenic patients: a cross-sectional study. Psychopharmacology (Berl). 1995;117(3):371-378.
  • Sporn AL, et al. Clozapine treatment of childhood-onset schizophrenia: evaluation of effectiveness, adverse effects, and long-term outcome. J Am Acad Child Adolesc Psychiatry. 2007;46(10):1349-1356.
  • Thorup M, et al. Clozapine treatment of schizophrenic patients. Plasma concentration and coagulation factors. Acta Psychiatr Scand. 1977;55(2):123-126.
  • Wong JO, et al. Plasma clozapine levels and clinical response in treatment-refractory Chinese schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30(2):251-264.
  • Yusufi B, et al. Prevalence and nature of side effects during clozapine maintenance treatment and the relationship with clozapine dose and plasma concentration. Int Clin Psychopharmacol. 2007;22(4):238-243.
  • Tan MSA, et al. A systematic review and meta-analysis of the association between clozapine and norclozapine serum levels and peripheral adverse drug reactions. Psychopharmacology (Berl). 2021;238(3):615-637.
  • Devinsky O, et al. Clozapine-related seizures. Neurology. 1991;41(3):369-371.
  • Rajkumar AP, et al. Clinical predictors of serum clozapine levels in patients with treatment-resistant schizophrenia. Int Clin Psychopharmacol. 2013;28(1):50-56.
  • Corripio I, et al. The role of striatal dopamine D2 receptors in the occurrence of extrapyramidal side effects: iodine-123-iodobenzamide single photon emission computed tomography study. Psychiatry Res. 2012;201(1):73-77.
  • Catafau AM, et al. Pharmacokinetics and time-course of D(2) receptor occupancy induced by atypical antipsychotics in stabilized schizophrenic patients. J Psychopharmacol. 2008;22(8):882-894.
  • Pilowsky LS, et al. Limbic selectivity of clozapine. Lancet. 1997;350(9076):490-491.
  • Takano A, et al. Time course of dopamine D2 receptor occupancy by clozapine with medium and high plasma concentrations. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30(1):75-81.
  • Shen X, et al. Flupenthixol versus placebo for schizophrenia. Cochrane Database Syst Rev. 2012;11:Cd009777.
  • Baumann P, et al. Flupentixol: relevance of stereoselective therapeutic drug monitoring. Psychopharmacology (Berl). 2012;221(4):719-720.
  • Jørgensen A, et al. Serum concentrations of cis(Z)-flupentixol and prolactin in chronic schizophrenic patients treated with flupentixol and cis(Z)-flupentixol decanoate. Psychopharmacology (Berl). 1982;77(1):58-65.
  • Balant-Gorgia AE, et al. Stereoselective disposition of flupentixol: influence on steady-state plasma concentrations in schizophrenic patients. Eur J Drug Metab Pharmacokinet. 1987;12(2):123-128.
  • Stauning JA, et al. Comparison of serum levels after intramuscular injections of 2% and 10% cis(Z)-flupentixol decanoate in Viscoleo to schizophrenic patients. Psychopharmacology (Berl). 1979;65(1):69-72.
  • Kirk L, et al. Concentrations of Cis(Z)-flupentixol in maternal serum, amniotic fluid, umbilical cord serum, and milk. Psychopharmacology (Berl). 1980;72(1):107-108.
  • Kistrup K, et al. Perphenazine decanoate and cis(z)-flupentixol decanoate in maintenance treatment of schizophrenic outpatients. Serum levels at the minimum effective dose. Psychopharmacology (Berl). 1991;105(1):42-48.
  • Bailey L, et al. Estimating the optimal dose of flupentixol decanoate in the maintenance treatment of schizophrenia-a systematic review of the literature. Psychopharmacology (Berl). 2019;236(11):3081-3092.
  • Saikia JK, et al. Steady-state serum concentrations after cis (Z)-flupentixol decanoate in viscoleo. Psychopharmacology (Berl). 1983;80(4):371-373.
  • Turbott J, et al. Neuroleptic serum levels measured by radioreceptor assay in patients receiving intramuscular depot neuroleptics. Some preliminary findings. Br J Psychiatry. 1985;146:439-442.
  • Balant-Gorgia AE, et al. Plasma flupentixol concentrations and clinical response in acute schizophrenia. Ther Drug Monit. 1985;7(4):411-414.
  • Lipska B, et al. Radioreceptor assay in checking serum concentration in long-term treatment with cis(z)-flupenthixol decanoate. Act Nerv Super (Praha). 1987;29(4):270-273.
  • Turbott J, et al. Depot neuroleptic medication and serum levels by radioreceptor assay: prolactin concentration, electrocardiogram abnormalities and six-month outcome. Aust N Z J Psychiatry. 1987;21(3):327-338.
  • Farde L, et al. PET analysis of human dopamine receptor subtypes using 11C-SCH 23390 and 11C-raclopride. Psychopharmacology (Berl). 1987;92(3):278-284.
  • Reimold M, et al. Occupancy of dopamine D(1), D (2) and serotonin (2A) receptors in schizophrenic patients treated with flupentixol in comparison with risperidone and haloperidol. Psychopharmacology (Berl). 2007;190(2):241-249.
  • Farde L, et al. PET analysis indicates atypical central dopamine receptor occupancy in clozapine-treated patients. Br J Psychiatry Suppl. 1992;(17):30-33.
  • Kilbourn MR In vivo binding of [18F]GBR 13119 to the brain dopamine uptake system. Life Sci. 1988;42(14):1347-1353.
  • Cookson IB The effects of a 50% reduction of cis(z)-flupenthixol decanoate in chronic schizophrenic patients maintained on a high dose regime. Int Clin Psychopharmacol. 1987;2(2):141-149.
  • Dahl SG Active metabolites of neuroleptic drugs: possible contribution to therapeutic and toxic effects. Ther Drug Monit. 1982;4(1):33-40.
  • Kirchheiner J, et al. Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry. 2004;9(5):442-473.
  • Ludewig R, et al., Akute Vergiftungen und Arzneimittelüberdosierungen. 2015: WVG Stuttgart
  • Curry SH, et al. Kinetics of fluphenazine after fluphenazine dihydrochloride, enanthate and decanoate administration to man. Br J Clin Pharmacol. 1979;7(4):325-331.
  • Ereshefsky L, et al. Future of depot neuroleptic therapy: pharmacokinetic and pharmacodynamic approaches. J Clin Psychiatry. 1984;45(5 Pt 2):50-59.
  • Marder SR, et al. Plasma levels of parent drug and metabolites in patients receiving oral and depot fluphenazine. Psychopharmacol Bull. 1989;25(3):479-482.
  • Michalets EL Update: clinically significant cytochrome P-450 drug interactions. Pharmacotherapy. 1998;18(1):84-112.
  • Sjöqvist F, et al. The convergence of conventional therapeutic drug monitoring and pharmacogenetic testing in personalized medicine: focus on antidepressants. Clin Pharmacol Ther. 2007;81(6):899-902.
  • Goff DC, et al. A placebo-controlled trial of fluoxetine added to neuroleptic in patients with schizophrenia. Psychopharmacology (Berl). 1995;117(4):417-423.
  • Sager JE, et al. Fluoxetine- and norfluoxetine-mediated complex drug-drug interactions: in vitro to in vivo correlation of effects on CYP2D6, CYP2C19, and CYP3A4. Clin Pharmacol Ther. 2014;95(6):653-662.
  • Dysken MW, et al. Fluphenazine pharmacokinetics and therapeutic response. Psychopharmacology (Berl). 1981;73(3):205-210.
  • Mavroidis ML, et al. Fluphenazine plasma levels and clinical response. J Clin Psychiatry. 1984;45(9):370-373.
  • Levinson DF, et al. Neuroleptic plasma level may predict response in patients who meet a criterion for improvement. Arch Gen Psychiatry. 1988;45(9):878-879.
  • Van Putten T, et al. Neuroleptic plasma levels. Schizophr Bull. 1991;17(2):197-216.
  • Wistedt B, et al. A depot neuroleptic withdrawal study. Plasma concentration of fluphenazine and flupenthixol and relapse frequency. Psychopharmacology (Berl). 1982;78(4):301-304.
  • Marder SR, et al. Plasma levels of fluphenazine in patients receiving fluphenazine decanoate. Relationship to clinical response. Br J Psychiatry. 1991;158:658-665.
  • Marder SR, et al. Fluphenazine plasma level monitoring for patients receiving fluphenazine decanoate. Schizophr Res. 2002;53(1-2):25-30.
  • Gitlin MJ, et al. Fluphenazine levels during maintenance treatment of recent-onset schizophrenia: relation to side effects, psychosocial function and depression. Psychopharmacology (Berl). 2000;148(4):350-354.
  • Nyberg S, et al. D(2)- and 5-HT(2) receptor occupancy in high-dose neuroleptic-treated patients. Int J Neuropsychopharmacol. 1998;1(2):95-101.
  • Harasko-van der Meer C, et al. Two cases of long term dopamine D2 receptor blockade after depot neuroleptics. J Neural Transm Gen Sect. 1993;94(3):217-221.
  • van Epen JH Experience with fluspirilene (R 6218), a long-acting neuroleptic. Psychiatr Neurol Neurochir. 1970;73(4):277-284.
  • Onkenhout LA, et al. Clinical study of an injectable long-acting neuroleptic agent: fluspirilene (R 6218). Psychiatr Neurol Neurochir. 1970;73(4):285-291.
  • Hassel P Experimental comparison of low doses of 1.5 mg fluspirilene and bromazepam in out-patients with psychovegetative disturbances. Pharmacopsychiatry. 1985;18(5):297-302.
  • Galizzi JP, et al. Neuroleptics of the diphenylbutylpiperidine series are potent calcium channel inhibitors. Proc Natl Acad Sci U S A. 1986;83(19):7513-7517.
  • Wang SJ Inhibition of glutamate release by fluspirilene in cerebrocortical nerve terminals (synaptosomes). Synapse. 2002;44(1):36-41.
  • García-Sosa AT, et al. The effect of a tightly bound water molecule on scaffold diversity in the computer-aided de novo ligand design of CDK2 inhibitors. J Mol Model. 2006;12(4):422-431.
  • Janssen PA, et al. The pharmacology of fluspirilene (R 6218), a potent, long-acting and injectable neuroleptic drug. Arzneimittelforschung. 1970;20(11):1689-1698.
  • Heykants JP The excretion and metabolism of the long-acting neuroleptic drug fluspirilene in the rat. Life Sci. 1969;8(19):1029-1039.
  • Soni SD Fluspirilene in the treatment of non-hospitalized schizophrenic patients. Curr Med Res Opin. 1977;4(9):645-649.
  • Rademaker M Do women have more adverse drug reactions? Am J Clin Dermatol. 2001;2(6):349-351.
  • Lucae S, et al. P2RX7, a gene coding for a purinergic ligand-gated ion channel, is associated with major depressive disorder. Hum Mol Genet. 2006;15(16):2438-2445.
  • Barden N, et al. Analysis of single nucleotide polymorphisms in genes in the chromosome 12Q24.31 region points to P2RX7 as a susceptibility gene to bipolar affective disorder. Am J Med Genet B Neuropsychiatr Genet. 2006;141b(4):374-382.
  • Inoue K, et al. Implication of ATP receptors in brain functions. Prog Neurobiol. 1996;50(5-6):483-492.
  • Thomas T, et al. Markov State Model Analysis of Haloperidol Binding to the D(3) Dopamine Receptor. J Chem Theory Comput. 2020;16(6):3879-3888.
  • Peprah K, et al. Multi-receptor drug design: Haloperidol as a scaffold for the design and synthesis of atypical antipsychotic agents. Bioorg Med Chem. 2012;20(3):1291-1297.
  • Fang J, et al. High-performance liquid chromatographic method for the detection and quantitation of haloperidol and seven of its metabolites in microsomal preparations. J Chromatogr. 1993;614(2):267-273.
  • Kudo S, et al. Pharmacokinetics of haloperidol: an update. Clin Pharmacokinet. 1999;37(6):435-456.
  • McGrane I, et al. Pharmacokinetic drug interactions with oral haloperidol in adults: dose correction factors from a combined weighted analysis. Expert Opin Drug Metab Toxicol. 2022;18(2):135-149.
  • Milosavljevic F, et al. Association of CYP2C19 and CYP2D6 Poor and Intermediate Metabolizer Status With Antidepressant and Antipsychotic Exposure: A Systematic Review and Meta-analysis. JAMA Psychiatry. 2021;78(3):270-280.
  • van der Weide K, et al. The Influence of the CYP3A4*22 Polymorphism and CYP2D6 Polymorphisms on Serum Concentrations of Aripiprazole, Haloperidol, Pimozide, and Risperidone in Psychiatric Patients. J Clin Psychopharmacol. 2015;35(3):228-236.
  • Fitzgerald PB, et al. Predicting haloperidol occupancy of central dopamine D2 receptors from plasma levels. Psychopharmacology (Berl). 2000;149(1):1-5.
  • Pilla Reddy V, et al. Population pharmacokinetic-pharmacodynamic modeling of haloperidol in patients with schizophrenia using positive and negative syndrome rating scale. J Clin Psychopharmacol. 2013;33(6):731-739.
  • Rao VA, et al. Clinical state, plasma levels of haloperidol and prolactin: a correlation study in chronic schizophrenia. Br J Psychiatry. 1980;137:518-521.
  • Goldstein JM, et al. Sex differences in clinical response to olanzapine compared with haloperidol. Psychiatry Res. 2002;110(1):27-37.
  • Grubor M, et al. HTR1A, HTR1B, HTR2A, HTR2C and HTR6 Gene Polymorphisms and Extrapyramidal Side Effects in Haloperidol-Treated Patients with Schizophrenia. Int J Mol Sci. 2020;21(7).
  • Adams CE, et al. Haloperidol versus placebo for schizophrenia. Cochrane Database Syst Rev. 2013;(11):Cd003082.
  • Stroup TS, et al. Management of common adverse effects of antipsychotic medications. World Psychiatry. 2018;17(3):341-356.
  • Huhn M, et al. Effects of antipsychotics on heart rate in treatment of schizophrenia: a systematic review and meta-analysis. Ther Adv Psychopharmacol. 2022;12:20451253221097261.
  • Nordström AL, et al. Time course of D2-dopamine receptor occupancy examined by PET after single oral doses of haloperidol. Psychopharmacology (Berl). 1992;106(4):433-438.
  • Vernaleken I, et al. Striatal and extrastriatal D2/D3-receptor-binding properties of ziprasidone: a positron emission tomography study with [18F]Fallypride and [11C]raclopride (D2/D3-receptor occupancy of ziprasidone). J Clin Psychopharmacol. 2008;28(6):608-617.
  • Kapur S, et al. The relationship between D2 receptor occupancy and plasma levels on low dose oral haloperidol: a PET study. Psychopharmacology (Berl). 1997;131(2):148-152.
  • Lim HS, et al. Exploration of optimal dosing regimens of haloperidol, a D2 Antagonist, via modeling and simulation analysis in a D2 receptor occupancy study. Pharm Res. 2013;30(3):683-693.
  • Nyberg S, et al. D2 dopamine receptor occupancy during low-dose treatment with haloperidol decanoate. Am J Psychiatry. 1995;152(2):173-178.
  • Ginovart N, et al. D2-receptor upregulation is dependent upon temporal course of D2-occupancy: a longitudinal [11C]-raclopride PET study in cats. Neuropsychopharmacology. 2009;34(3):662-671.
  • Uchida H, et al. Dose and dosing frequency of long-acting injectable antipsychotics: a systematic review of PET and SPECT data and clinical implications. J Clin Psychopharmacol. 2014;34(6):728-735.
  • Albers LJ, et al. Iloperidone: a new benzisoxazole atypical antipsychotic drug. Is it novel enough to impact the crowded atypical antipsychotic market? Expert Opin Investig Drugs. 2008;17(1):61-75.
  • Nnadi CU, et al. Clinical and pharmacogenetic studies of iloperidone. Per Med. 2008;5(4):367-375.
  • Bishop JR, et al. Iloperidone for the treatment of schizophrenia. Drugs Today (Barc). 2010;46(8):567-579.
  • Pei Q, et al. Influences of CYP2D6(*)10 polymorphisms on the pharmacokinetics of iloperidone and its metabolites in Chinese patients with schizophrenia: a population pharmacokinetic analysis. Acta Pharmacol Sin. 2016;37(11):1499-1508.
  • Danek PJ, et al. The atypical neuroleptics iloperidone and lurasidone inhibit human cytochrome P450 enzymes in vitro. Evaluation of potential metabolic interactions. Pharmacol Rep. 2020;72(6):1685-1694.
  • Wójcikowski J, et al. The cytochrome P450-catalyzed metabolism of levomepromazine: a phenothiazine neuroleptic with a wide spectrum of clinical application. Biochem Pharmacol. 2014;90(2):188-195.
  • Lal S, et al. Levomepromazine receptor binding profile in human brain–implications for treatment-resistant schizophrenia. Acta Psychiatr Scand. 1993;87(6):380-383.
  • Dahl SG, et al. Pharmacokinetics and relative bioavailability of levomepromazine after repeated administration of tablets and syrup. Eur J Clin Pharmacol. 1977;11(4):305-310.
  • Bagli M, et al. Bioequivalence and absolute bioavailability of oblong and coated levomepromazine tablets in CYP2D6 phenotyped subjects. Int J Clin Pharmacol Ther. 1995;33(12):646-652.
  • Dahl SG Pharmacokinetics of methotrimeprazine after single and multiple doses. Clin Pharmacol Ther. 1976;19(4):435-442.
  • Hals PA, et al. Muscarinic cholinergic and histamine H1 receptor binding of phenothiazine drug metabolites. Life Sci. 1988;43(5):405-412.
  • Basińska-Ziobroń A, et al. Inhibition of human cytochrome P450 isoenzymes by a phenothiazine neuroleptic levomepromazine: An in vitro study. Pharmacol Rep. 2015;67(6):1178-1182.
  • Syvälahti EK, et al. Inhibitory effects of neuroleptics on debrisoquine oxidation in man. Br J Clin Pharmacol. 1986;22(1):89-92.
  • Kallio J, et al. The effects of beta-adrenoceptor antagonists and levomepromazine on the metabolic ratio of debrisoquine. Br J Clin Pharmacol. 1990;30(4):638-643.
  • Vevelstad M, et al. O-demethylation of codeine to morphine inhibited by low-dose levomepromazine. Eur J Clin Pharmacol. 2009;65(8):795-801.
  • Danek PJ, et al. Levomepromazine and clozapine induce the main human cytochrome P450 drug metabolizing enzyme CYP3A4. Pharmacol Rep. 2021;73(1):303-308.
  • Tokunaga H, et al. Plasma concentrations of antipsychotic drugs in psychiatric inpatients. Nihon Hoigaku Zasshi. 1997;51(6):417-422.
  • Ereshefsky L Pharmacologic and pharmacokinetic considerations in choosing an antipsychotic. J Clin Psychiatry. 1999;60 Suppl 10:20-30.
  • Popovic D, et al. Revisiting loxapine: a systematic review. Ann Gen Psychiatry. 2015;14:15.
  • Solmi M, et al. Safety, tolerability, and risks associated with first- and second-generation antipsychotics: a state-of-the-art clinical review. Ther Clin Risk Manag. 2017;13:757-777.
  • Luo JP, et al. In vitro identification of the human cytochrome p450 enzymes involved in the oxidative metabolism of loxapine. Biopharm Drug Dispos. 2011;32(7):398-407.
  • Takahashi LH, et al. Effect of smoking on the pharmacokinetics of inhaled loxapine. Ther Drug Monit. 2014;36(5):618-623.
  • Pahwa M, et al. New Antipsychotic Medications in the Last Decade. Curr Psychiatry Rep. 2021;23(12):87.
  • Kapur S, et al. The D2 receptor occupancy profile of loxapine determined using PET. Neuropsychopharmacology. 1996;15(6):562-566.
  • Remington G, et al. D2 and 5-HT2 receptor effects of antipsychotics: bridging basic and clinical findings using PET. J Clin Psychiatry. 1999;60 Suppl 10:15-19.
  • Kapur S, et al. PET evidence that loxapine is an equipotent blocker of 5-HT2 and D2 receptors: implications for the therapeutics of schizophrenia. Am J Psychiatry. 1997;154(11):1525-1529.
  • Ferreri F, et al. The in Vitro Actions of Loxapine on Dopaminergic and Serotonergic Receptors. Time to Consider Atypical Classification of This Antipsychotic Drug? Int J Neuropsychopharmacol. 2018;21(4):355-360.
  • Singh AN, et al. A neurochemical basis for the antipsychotic activity of loxapine: interactions with dopamine D1, D2, D4 and serotonin 5-HT2 receptor subtypes. J Psychiatry Neurosci. 1996;21(1):29-35.
  • Chakrabarti A, et al. Loxapine for schizophrenia. Cochrane Database Syst Rev. 2007;2007(4):Cd001943.
  • Davis RE, et al. ITI-007 demonstrates brain occupancy at serotonin 5-HT(2)A and dopamine D(2) receptors and serotonin transporters using positron emission tomography in healthy volunteers. Psychopharmacology (Berl). 2015;232(15):2863-2872.
  • Correll CU, et al. Efficacy and Safety of Lumateperone for Treatment of Schizophrenia: A Randomized Clinical Trial. JAMA Psychiatry. 2020;77(4):349-358.
  • Syed AB, et al. The role of lumateperone in the treatment of schizophrenia. Ther Adv Psychopharmacol. 2021;11:20451253211034019.
  • Calabrese JR, et al. Efficacy and Safety of Lumateperone for Major Depressive Episodes Associated With Bipolar I or Bipolar II Disorder: A Phase 3 Randomized Placebo-Controlled Trial. Am J Psychiatry. 2021;178(12):1098-1106.
  • Greenberg WM, et al. Pharmacokinetics and Pharmacodynamics of Lurasidone Hydrochloride, a Second-Generation Antipsychotic: A Systematic Review of the Published Literature. Clin Pharmacokinet. 2017;56(5):493-503.
  • Administration USFD Clinical Pharmacology and Biopharmaceutics Review of lurasidone 2010. 2010.
  • EMA Assessment report of lurasidone 2014. 2014.
  • Preskorn S, et al. Effect of food on the pharmacokinetics of lurasidone: results of two randomized, open-label, crossover studies. Hum Psychopharmacol. 2013;28(5):495-505.
  • Findling RL, et al. Pharmacokinetics and Tolerability of Lurasidone in Children and Adolescents With Psychiatric Disorders. Clin Ther. 2015;37(12):2788-2797.
  • Wong DF, et al. Determination of dopamine D2 receptor occupancy by lurasidone using positron emission tomography in healthy male subjects. Psychopharmacology (Berl). 2013;229(2):245-252.
  • Huang CY, et al. Therapeutic Drug Monitoring of Lurasidone in Patients with Schizophrenia or Bipolar Disorder: A preliminary study. Psychiatry Clin Neurosci. 2022;76(12):674-675.
  • Li J, et al. Identifying the genetic risk factors for treatment response to lurasidone by genome-wide association study: A meta-analysis of samples from three independent clinical trials. Schizophr Res. 2018;199:203-213.
  • Yoshikawa A, et al. A functional HTR1A polymorphism, rs6295, predicts short-term response to lurasidone: confirmation with meta-analysis of other antipsychotic drugs. Pharmacogenomics J. 2020;20(2):260-270.
  • PharmGKB PharmGKB clinical annotations on lurasidone.
  • Potkin SG, et al. D2 receptor occupancy following lurasidone treatment in patients with schizophrenia or schizoaffective disorder. CNS Spectr. 2014;19(2):176-181.
  • Meltzer HY, et al. Melperone and clozapine: neuroendocrine effects of atypical neuroleptic drugs. Acta Psychiatrica Scandinavica. 1989;80(S352):24-29.
  • Borgström L, et al. Pharmacokinetics of parenteral and oral melperone in man. European Journal of Clinical Pharmacology. 1982;23(2):173-176.
  • Christensen I, et al. Additional studies on side effects of melperone in long-term therapy for 1-20 years in psychiatric patients. Arzneimittel-Forschung. 1986;36(5):855-860.
  • Kirkegaard A, et al. Additional studies on side effects of melperone in long-term therapy for 1 to 15 years in psychiatric patients. Arzneimittel-Forschung. 1981;31(4):737-740.
  • Bjerkenstedt L, et al. Effects of melperone and thiothixene on prolactin levels in cerebrospinal fluid and plasma of psychotic women. Archiv Fur Psychiatrie Und Nervenkrankheiten. 1977;224(4):281-293.
  • Bjerkenstedt L, et al. Relationships between clinical and biochemical effects of melperone and thiothixene in psychotic women. Archiv Fur Psychiatrie Und Nervenkrankheiten. 1979;227(3):181-192.
  • Gahr M, et al. Successful treatment of schizophrenia with melperone augmentation in a patient with phenotypic CYP2D6 ultrarapid metabolization: a case report. J Med Case Rep. 2012;6:49.
  • Köhnke MD, et al. Cytochrome P450 2D6 dependent metabolization of risperidone is inhibited by melperone. Eur J Clin Pharmacol. 2006;62(4):333-334.
  • Wiesel FA, et al. Clinical melperone treatment blocks D2-dopamine receptors in the human brain as determined by PET. Acta Psychiatr Scand Suppl. 1989;352:30-34.
  • Aparasu RR, et al. Hospitalization risk associated with typical and atypical antipsychotic use in community-dwelling elderly patients. Am J Geriatr Pharmacother. 2008;6(4):198-204.
  • Bagnall A, et al. Molindone for schizophrenia and severe mental illness. Cochrane Database Syst Rev. 2007;(1):Cd002083.
  • AMA, AMA Drug evaluations Annual, Editor^Editors. 1994:283.
  • Pandurangi AK, et al. Relation of serum molindone levels to serum prolactin levels and antipsychotic response. J Clin Psychiatry. 1989;50(10):379-381.
  • Bhana N, et al. Olanzapine: an updated review of its use in the management of schizophrenia. Drugs. 2001;61(1):111-161.
  • Altamura AC, et al. Intramuscular preparations of antipsychotics: uses and relevance in clinical practice. Drugs. 2003;63(5):493-512.
  • Callaghan JT, et al. Olanzapine. Pharmacokinetic and pharmacodynamic profile. Clin Pharmacokinet. 1999;37(3):177-193.
  • Owen RT Olanzapine: a review of rapid and long-acting parenteral formulations. Drugs Today (Barc). 2010;46(3):173-181.
  • Heres S, et al. Pharmacokinetics of olanzapine long-acting injection: the clinical perspective. Int Clin Psychopharmacol. 2014;29(6):299-312.
  • Tveito M, et al. Age Impacts Olanzapine Exposure Differently During Use of Oral Versus Long-Acting Injectable Formulations: An Observational Study Including 8,288 Patients. J Clin Psychopharmacol. 2018;38(6):570-576.
  • Deng SH, et al. A Retrospective Analysis of Steady-State Olanzapine Concentrations in Chinese Patients Using Therapeutic Drug Monitoring: Effects of Valproate and Other Factors. Ther Drug Monit. 2020;42(4):636-642.
  • Zhou J, et al. Functional analysis of UGT1A4(P24T) and UGT1A4(L48V) variant enzymes. Pharmacogenomics. 2011;12(12):1671-1679.
  • Koller D, et al. The effects of aripiprazole and olanzapine on pupillary light reflex and its relationship with pharmacogenetics in a randomized multiple-dose trial. Br J Clin Pharmacol. 2020;86(10):2051-2062.
  • Koller D, et al. Safety and cardiovascular effects of multiple-dose administration of aripiprazole and olanzapine in a randomised clinical trial. Hum Psychopharmacol. 2021;36(1):1-12.
  • Cabaleiro T, et al. Polymorphisms influencing olanzapine metabolism and adverse effects in healthy subjects. Hum Psychopharmacol. 2013;28(3):205-214.
  • Yan P, et al. Association of the genetic polymorphisms of metabolizing enzymes, transporters, target receptors and their interactions with treatment response to olanzapine in chinese han schizophrenia patients. Psychiatry Res. 2020;293:113470.
  • Mao M, et al. Interindividual variation in olanzapine concentration influenced by UGT1A4 L48V polymorphism in serum and upstream FMO polymorphisms in cerebrospinal fluid. J Clin Psychopharmacol. 2012;32(2):287-289.
  • Ghotbi R, et al. Carriers of the UGT1A4 142T > G gene variant are predisposed to reduced olanzapine exposure–an impact similar to male gender or smoking in schizophrenic patients. Eur J Clin Pharmacol. 2010;66(5):465-474.
  • Haslemo T, et al. UGT1A4*3 encodes significantly increased glucuronidation of olanzapine in patients on maintenance treatment and in recombinant systems. Clin Pharmacol Ther. 2012;92(2):221-227.
  • Hattori S, et al. The association of genetic polymorphisms in CYP1A2, UGT1A4, and ABCB1 with autonomic nervous system dysfunction in schizophrenia patients treated with olanzapine. BMC Psychiatry. 2020;20(1):72.
  • Zubiaur P, et al. The pharmacogenetics of treatment with olanzapine. Pharmacogenomics. 2021;22(14):939-958.
  • Söderberg MM, et al. Pharmacogenetics of olanzapine metabolism. Pharmacogenomics. 2013;14(11):1319-1336.
  • Calligaro DO, et al. The synthesis and biological activity of some known and putative metabolites of the atypical antipsychotic agent olanzapine (LY170053). Bioorganic and Medicinal Chemistry Letters. 1997;7(1):25-30.
  • Landi MT, et al. Human cytochrome P4501A2. IARC Sci Publ. 1999;(148):173-195.
  • Sachse C, et al. Functional significance of a C–>A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol. 1999;47(4):445-449.
  • Chida M, et al. Detection of three genetic polymorphisms in the 5'-flanking region and intron 1 of human CYP1A2 in the Japanese population. Jpn J Cancer Res. 1999;90(9):899-902.
  • Han XM, et al. Inducibility of CYP1A2 by omeprazole in vivo related to the genetic polymorphism of CYP1A2. Br J Clin Pharmacol. 2002;54(5):540-543.
  • Shirley KL, et al. Correlation of cytochrome P450 (CYP) 1A2 activity using caffeine phenotyping and olanzapine disposition in healthy volunteers. Neuropsychopharmacology. 2003;28(5):961-966.
  • Carrillo JA, et al. Role of the smoking-induced cytochrome P450 (CYP)1A2 and polymorphic CYP2D6 in steady-state concentration of olanzapine. J Clin Psychopharmacol. 2003;23(2):119-127.
  • Czerwensky F, et al. CYP1A2*1D and *1F polymorphisms have a significant impact on olanzapine serum concentrations. Ther Drug Monit. 2015;37(2):152-160.
  • Djordjevic N, et al. Cigarette smoking and heavy coffee consumption affecting response to olanzapine: The role of genetic polymorphism. World J Biol Psychiatry. 2020;21(1):29-52.
  • Laika B, et al. Pharmacogenetics and olanzapine treatment: CYP1A2*1F and serotonergic polymorphisms influence therapeutic outcome. Pharmacogenomics J. 2010;10(1):20-29.
  • Skogh E, et al. High correlation between serum and cerebrospinal fluid olanzapine concentrations in patients with schizophrenia or schizoaffective disorder medicating with oral olanzapine as the only antipsychotic drug. J Clin Psychopharmacol. 2011;31(1):4-9.
  • Saiz-Rodríguez M, et al. Polymorphisms in CYP1A2, CYP2C9 and ABCB1 affect agomelatine pharmacokinetics. J Psychopharmacol. 2019;33(4):522-531.
  • Zubiaur P, et al. Impact of polymorphisms in transporter and metabolizing enzyme genes on olanzapine pharmacokinetics and safety in healthy volunteers. Biomed Pharmacother. 2021;133:111087.
  • Soria-Chacartegui P, et al. Genetic Polymorphisms Associated With the Pharmacokinetics, Pharmacodynamics and Adverse Effects of Olanzapine, Aripiprazole and Risperidone. Front Pharmacol. 2021;12:711940.
  • Liang W, et al. Variants of GRM7 as risk factor and response to antipsychotic therapy in schizophrenia. Transl Psychiatry. 2020;10(1):83.
  • Nikolac Perkovic M, et al. Association between the brain-derived neurotrophic factor Val66Met polymorphism and therapeutic response to olanzapine in schizophrenia patients. Psychopharmacology (Berl). 2014;231(18):3757-3764.
  • Ramsey TL, et al. Replication of SULT4A1-1 as a pharmacogenetic marker of olanzapine response and evidence of lower weight gain in the high response group. Pharmacogenomics. 2014;15(7):933-939.
  • Ramsey TL, et al. Glucagon-like peptide 1 receptor (GLP1R) haplotypes correlate with altered response to multiple antipsychotics in the CATIE trial. Schizophr Res. 2014;160(1-3):73-79.
  • Yu H, et al. Five novel loci associated with antipsychotic treatment response in patients with schizophrenia: a genome-wide association study. Lancet Psychiatry. 2018;5(4):327-338.
  • Zhou W, et al. Genetic Association of Olanzapine Treatment Response in Han Chinese Schizophrenia Patients. Front Pharmacol. 2019;10:177.
  • Swathy B, et al. Understanding the influence of antipsychotic drugs on global methylation events and its relevance in treatment response. Epigenomics. 2018;10(3):233-247.
  • Venugopal D, et al. Impact of antipsychotic treatment on methylation status of Interleukin-6 [IL-6] gene in Schizophrenia. J Psychiatr Res. 2018;104:88-95.
  • Lisoway AJ, et al. Toward personalized medicine in schizophrenia: Genetics and epigenetics of antipsychotic treatment. Schizophr Res. 2021;232:112-124.
  • Fellows L, et al. Investigation of target plasma concentration-effect relationships for olanzapine in schizophrenia. Ther Drug Monit. 2003;25(6):682-689.
  • Mauri MC, et al. Clinical outcome and olanzapine plasma levels in acute schizophrenia. Eur Psychiatry. 2005;20(1):55-60.
  • Lu ML, et al. Application of Plasma Levels of Olanzapine and N-Desmethyl-Olanzapine to Monitor Clinical Efficacy in Patients with Schizophrenia. PLoS One. 2016;11(2):e0148539.
  • Citrome L, et al. Olanzapine plasma concentrations after treatment with 10, 20, and 40 mg/d in patients with schizophrenia: an analysis of correlations with efficacy, weight gain, and prolactin concentration. J Clin Psychopharmacol. 2009;29(3):278-283.
  • Nozawa M, et al. The relationship between the response of clinical symptoms and plasma olanzapine concentration, based on pharmacogenetics: Juntendo University Schizophrenia Projects (JUSP). Ther Drug Monit. 2008;30(1):35-40.
  • Skogh E, et al. Therapeutic drug monitoring data on olanzapine and its N-demethyl metabolite in the naturalistic clinical setting. Ther Drug Monit. 2002;24(4):518-526.
  • Arnaiz JA, et al. The usefulness of Olanzapine plasma concentrations in monitoring treatment efficacy and metabolic disturbances in first-episode psychosis. Psychopharmacology (Berl). 2021;238(3):665-676.
  • Robertson MD, et al. Olanzapine concentrations in clinical serum and postmortem blood specimens–when does therapeutic become toxic? J Forensic Sci. 2000;45(2):418-421.
  • Kapur S, et al. Clinical and theoretical implications of 5-HT2 and D2 receptor occupancy of clozapine, risperidone, and olanzapine in schizophrenia. Am J Psychiatry. 1999;156(2):286-293.
  • Mamo D, et al. D2 receptor occupancy of olanzapine pamoate depot using positron emission tomography: an open-label study in patients with schizophrenia. Neuropsychopharmacology. 2008;33(2):298-304.
  • Bishara D, et al. Olanzapine: a systematic review and meta-regression of the relationships between dose, plasma concentration, receptor occupancy, and response. J Clin Psychopharmacol. 2013;33(3):329-335.
  • Schoretsanitis G, et al. A systematic review and combined analysis of therapeutic drug monitoring studies for long-acting risperidone. Expert Rev Clin Pharmacol. 2017;10(9):965-981.
  • Schoretsanitis G, et al. A systematic review and combined analysis of therapeutic drug monitoring studies for oral paliperidone. Expert Rev Clin Pharmacol. 2018;11(6):625-639.
  • Corena-McLeod M Comparative Pharmacology of Risperidone and Paliperidone. Drugs R D. 2015;15(2):163-174.
  • Vermeir M, et al. Absorption, metabolism, and excretion of paliperidone, a new monoaminergic antagonist, in humans. Drug Metab Dispos. 2008;36(4):769-779.
  • Lisbeth P, et al. Genotype and co-medication dependent CYP2D6 metabolic activity: effects on serum concentrations of aripiprazole, haloperidol, risperidone, paliperidone and zuclopenthixol. Eur J Clin Pharmacol. 2016;72(2):175-184.
  • Toja-Camba FJ, et al. Review of Pharmacokinetics and Pharmacogenetics in Atypical Long-Acting Injectable Antipsychotics. Pharmaceutics. 2021;13(7).
  • Janssen Pharmaceuticals, INVEGA SUSTENNA® (paliperidone palmitate) extended-release injectable suspension, for intramuscular use. 2009, Titusville, NJ: Janssen Pharmaceuticals, Inc.
  • Schoretsanitis G, et al. Therapeutic Drug Monitoring of Long-Acting Injectable Antipsychotic Drugs. Ther Drug Monit. 2020.
  • Schoretsanitis G, et al. A systematic review and combined analysis of therapeutic drug monitoring studies for long-acting paliperidone. Expert Rev Clin Pharmacol. 2018;11(12):1237-1253.
  • Janssen Pharmaceuticals, INVEGA HAFYERA™ (paliperidone palmitate) extended-release injectable suspension, for gluteal intramuscular use, Editor^Editors. 2021.
  • Arakawa R, et al. Dose-finding study of paliperidone ER based on striatal and extrastriatal dopamine D2 receptor occupancy in patients with schizophrenia. Psychopharmacology (Berl). 2008;197(2):229-235.
  • Chung YC, et al. Early predictors of a clinical response at 8 weeks in patients with first-episode psychosis treated with paliperidone ER. J Psychopharmacol. 2016;30(8):810-818.
  • Suzuki H, et al. Assessments of plasma concentrations, pathology symptoms, and cognition following paliperidone treatment in schizophrenic patients previously treated with risperidone. Asian Journal of Psychiatry. 2017;26:56-57.
  • Suzuki H, et al. Relationship between the plasma concentration of paliperidone and the clinical and drug-induced extrapyramidal symptoms in elderly patients with schizophrenia. Hum Psychopharmacol. 2014;29(3):244-250.
  • Nazirizadeh Y, et al. Serum concentrations of paliperidone versus risperidone and clinical effects. Eur J Clin Pharmacol. 2010;66(8):797-803.
  • Schoretsanitis G, et al. Clinical response in patients treated with once-monthly paliperidone palmitate: analysis of a therapeutic drug monitoring (TDM) database. Eur Arch Psychiatry Clin Neurosci. 2021;271(8):1437-1443.
  • Santoro V, et al. Pharmacokinetics of Paliperidone Palmitate in schizophrenic patients: data from a routine therapeutic drug monitoring service. Clin Ther. 2017;39(8S):e50.
  • Mauri MC, et al. Paliperidone Long-Acting Plasma Level Monitoring and a New Method of Evaluation of Clinical Stability. Pharmacopsychiatry. 2017;50(4):145-151.
  • Mauri MC, et al. Paliperidone LAI and Aripiprazole LAI Plasma Level Monitoring in the Prophylaxis of Bipolar Disorder Type I with Manic Predominance. Pharmacopsychiatry. 2020;53(5):209-219.
  • Cellini L, et al. Switch to 3-Month Long-Acting Injectable Paliperidone May Decrease Plasma Levels: A Case Series. J Clin Psychopharmacol. 2021;41(6):694-696.
  • Najarian D, et al. A Randomized, Double-Blind, Multicenter, Noninferiority Study Comparing Paliperidone Palmitate 6-Month Versus the 3-Month Long-Acting Injectable in Patients With Schizophrenia. Int J Neuropsychopharmacol. 2022;25(3):238-251.
  • Schoretsanitis G, et al. Blood Levels to Optimize Antipsychotic Treatment in Clinical Practice: A Joint Consensus Statement of the American Society of Clinical Psychopharmacology and the Therapeutic Drug Monitoring Task Force of the Arbeitsgemeinschaft fur Neuropsychopharmakologie und Pharmakopsychiatrie. J Clin Psychiatry. 2020;81(3).
  • Holmes SE, et al. In vivo imaging of brain microglial activity in antipsychotic-free and medicated schizophrenia: a [(11)C](R)-PK11195 positron emission tomography study. Mol Psychiatry. 2016;21(12):1672-1679.
  • Andrade C Practical Psychopharmacology: Using a Knowledge of Pharmacokinetics to More Rapidly Stabilize Patients at Lower Drug Doses. J Clin Psychiatry. 2022;83(6).
  • Migdalof BH, et al. Penfluridol: a neuroleptic drug designed for long duration of action. Drug Metab Rev. 1979;9(2):281-299.
  • Dandawate P, et al. Diphenylbutylpiperidine Antipsychotic Drugs Inhibit Prolactin Receptor Signaling to Reduce Growth of Pancreatic Ductal Adenocarcinoma in Mice. Gastroenterology. 2020;158(5):1433-1449.e1427.
  • Cooper SF, et al. Penfluridol steady-state kinetics in psychiatric patients. Clin Pharmacol Ther. 1975;18(3):325-329.
  • Cooper SF, et al. Gas-liquid chromatographic determination of penfluridol in plasma. A new specific technique. Int Pharmacopsychiatry. 1975;10(2):78-88.
  • Jacobsson L, et al. Penfluridol and thiothixene. Dosage, plasma levels and changes in psychopathology. Int Pharmacopsychiatry. 1976;11(4):206-214.
  • Gallant DM, et al. Penfluridol: an efficacious long-acting oral antipsychotic compound. Am J Psychiatry. 1974;131(6):699-702.
  • d'Elia G, et al. Changes in psychopathology in relation to EEG variables and visual averaged evoked responses (V.AER) in schizophrenic patients treated with penfluridol or thiothixene. Acta Psychiatr Scand. 1977;55(4):309-318.
  • Nathan RS, et al. A preliminary study of sex-related differences in prolactin responses to dopamine blockade and insulin hypoglycemia and in penfluridol plasma levels in schizophrenic patients. Psychopharmacology (Berl). 1983;80(1):46-49.
  • Grohmann R, et al. Adverse psychic reactions to psychotropic drugs–a report from the AMUP study. Pharmacopsychiatry. 1993;26(3):84-93.
  • El Ela AA, et al. Identification of P-glycoprotein substrates and inhibitors among psychoactive compounds–implications for pharmacokinetics of selected substrates. J Pharm Pharmacol. 2004;56(8):967-975.
  • Schaller G, et al. Perazine elevates clozapine serum levels by inhibiting hepatic metabolism. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(5):908-909.
  • Fischer M, et al. Elevated clozapine serum levels in combination with perazine. Psychopharmacology (Berl). 2013;226(3):623-625.
  • Paulzen M, et al. Cytochrome P450-mediated interaction between perazine and risperidone: implications for antipsychotic polypharmacy. Br J Clin Pharmacol. 2017;83(8):1668-1675.
  • Breyer-Pfaff U, et al. Single-dose kinetics of the neuroleptic drug perazine in psychotic patients. Psychopharmacology (Berl). 1988;95(3):374-377.
  • Sachse J, et al. Automated analysis of quetiapine and other antipsychotic drugs in human blood by high performance-liquid chromatography with column-switching and spectrophotometric detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2006;830(2):342-348.
  • Pietzcker A, et al. Outcome and risks of ultra-long-term treatment with an oral neuroleptic drug. Relationship between perazine serum levels and clinical variables in schizophrenic outpatients. Arch Psychiatr Nervenkr (1970). 1981;229(4):315-329.
  • Pietzcker A, et al. [Relationship between perazine serum concentration and clinical results in long-term treated schizophrenic outpatients (author's transl)]. Arzneimittelforschung. 1978;28(8):1302-1303.
  • Breyer-Pfaff U, et al. Prediction and evaluation criteria in perazine therapy of acute schizophrenics. Pharmacokinetic data. Pharmacopsychiatria. 1983;16(5):160-165.
  • Gaebel W, et al. Early serum levels of neuroleptics do not predict therapeutic response in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 1992;16(6):891-900.
  • Grohmann R, et al. Extrapyramidal symptoms in neuroleptic recipients. Agents Actions Suppl. 1990;29:71-82.
  • Stübner S, et al. Blood dyscrasias induced by psychotropic drugs. Pharmacopsychiatry. 2004;37 Suppl 1:S70-78.
  • Hommers L, et al. Antipsychotics in routine treatment are minor contributors to QT prolongation compared to genetics and age. J Psychopharmacol. 2021;35(9):1127-1133.
  • Ozdemir V, et al. Paroxetine potentiates the central nervous system side effects of perphenazine: contribution of cytochrome P4502D6 inhibition in vivo. Clin Pharmacol Ther. 1997;62(3):334-347.
  • Hansen LB, et al. Dose-response relationships of perphenazine in the treatment of acute psychoses. Psychopharmacology (Berl). 1982;78(2):112-115.
  • Sweet RA, et al. Pharmacologic profile of perphenazine's metabolites. J Clin Psychopharmacol. 2000;20(2):181-187.
  • Mazure CM, et al. The relationship between blood perphenazine levels, early resolution of psychotic symptoms, and side effects. J Clin Psychiatry. 1990;51(8):330-334.
  • Dahl-Puustinen ML, et al. Disposition of perphenazine is related to polymorphic debrisoquin hydroxylation in human beings. Clin Pharmacol Ther. 1989;46(1):78-81.
  • Linnet K, et al. Steady-state serum concentrations of the neuroleptic perphenazine in relation to CYP2D6 genetic polymorphism. Clin Pharmacol Ther. 1996;60(1):41-47.
  • Ozdemir V, et al. CYP2D6 genotype in relation to perphenazine concentration and pituitary pharmacodynamic tissue sensitivity in Asians: CYP2D6-serotonin-dopamine crosstalk revisited. Pharmacogenet Genomics. 2007;17(5):339-347.
  • Aklillu E, et al. CYP2D6 and DRD2 genes differentially impact pharmacodynamic sensitivity and time course of prolactin response to perphenazine. Pharmacogenet Genomics. 2007;17(11):989-993.
  • Dahl ML Cytochrome p450 phenotyping/genotyping in patients receiving antipsychotics: useful aid to prescribing? Clin Pharmacokinet. 2002;41(7):453-470.
  • Zhou SF Polymorphism of human cytochrome P450 2D6 and its clinical significance: part II. Clin Pharmacokinet. 2009;48(12):761-804.
  • Farde L, et al. D1- and D2-dopamine receptor occupancy during treatment with conventional and atypical neuroleptics. Psychopharmacology (Berl). 1989;99 Suppl:S28-31.
  • Silvestri S, et al. Increased dopamine D2 receptor binding after long-term treatment with antipsychotics in humans: a clinical PET study. Psychopharmacology (Berl). 2000;152(2):174-180.
  • Appel L, et al. BL-1020, a novel antipsychotic candidate with GABA-enhancing effects: D2 receptor occupancy study in humans. Eur Neuropsychopharmacol. 2009;19(12):841-850.
  • Talvik M, et al. A cross-validation study on the relationship between central D2 receptor occupancy and serum perphenazine concentration. Psychopharmacology (Berl). 2004;175(2):148-153.
  • Matar HE, et al. Pericyazine for schizophrenia. Cochrane Database Syst Rev. 2014;(5):Cd007479.
  • Morishita H, et al. Gastrointestinal absorption of pimozide is enhanced by inhibition of P-glycoprotein. PLoS One. 2020;15(10):e0232438.
  • Rogers HL, et al. CYP2D6 genotype information to guide pimozide treatment in adult and pediatric patients: basis for the U.S. Food and Drug Administration's new dosing recommendations. J Clin Psychiatry. 2012;73(9):1187-1190.
  • Löscher W, et al. Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci. 2005;6(8):591-602.
  • Kim JY, et al. P-gp Inhibition by the Anti-psychotic Drug Pimozide Increases Apoptosis, as well as Expression of pRb and pH2AX in Highly Drug-resistant KBV20C Cells. Anticancer Res. 2018;38(10):5685-5692.
  • Strouse JJ, et al. Fluorescent substrates for flow cytometric evaluation of efflux inhibition in ABCB1, ABCC1, and ABCG2 transporters. Anal Biochem. 2013;437(1):77-87.
  • The Scottish First Episode Schizophrenia Study. II. Treatment: pimozide versus flupenthixol. The Scottish Schizophrenia Research Group. Br J Psychiatry. 1987;150:334-338.
  • Kloosterboer SM, et al. Pipamperone Population Pharmacokinetics Related to Effectiveness and Side Effects in Children and Adolescents. Clin Pharmacokinet. 2020;59(11):1393-1405.
  • Müller-Spahn F Behavioral disturbances in dementia. Dialogues Clin Neurosci. 2003;5(1):49-59.
  • Potgieter GE, et al. Pharmacokinetics of pipamperone from three different tablet formulations. Arzneimittelforschung. 2002;52(6):430-434.
  • Shah RR The significance of QT interval in drug development. Br J Clin Pharmacol. 2002;54(2):188-202.
  • Sicouri S, et al. Mechanisms Underlying the Actions of Antidepressant and Antipsychotic Drugs That Cause Sudden Cardiac Arrest. Arrhythm Electrophysiol Rev. 2018;7(3):199-209.
  • Hefner G, et al. Pharmacodynamic Drug-Drug interactions of QT-prolonging drugs in hospitalized psychiatric patients. J Neural Transm (Vienna). 2021;128(2):243-252.
  • Letmaier M, et al. Venous thromboembolism during treatment with antipsychotics: Results of a drug surveillance programme. World J Biol Psychiatry. 2018;19(3):175-186.
  • Taylor WB, et al. Preliminary studies of the pharmacokinetics and pharmacodynamics of prochlorperazine in healthy volunteers. Br J Clin Pharmacol. 1987;23(2):137-142.
  • Isah AO, et al. Clinical pharmacology of prochlorperazine in healthy young males. Br J Clin Pharmacol. 1991;32(6):677-684.
  • Finn A, et al. Bioavailability and metabolism of prochlorperazine administered via the buccal and oral delivery route. J Clin Pharmacol. 2005;45(12):1383-1390.
  • Tashiro M, et al. Influence of cytochrome P450 genotype on the plasma disposition of prochlorperazine metabolites and their relationships with clinical responses in cancer patients. Ann Clin Biochem. 2018;55(3):385-393.
  • Creese I, et al. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science. 1976;192(4238):481-483.
  • Sgaragli G, et al. Promazine. A major plasma metabolite of chlorpromazine in a population of chronic schizophrenics. Drug Metab Dispos. 1986;14(2):263-266.
  • Davis C, Promazine, in xPharm: The Comprehensive Pharmacology Reference, Enna SJ, et al., Editors. 2007, Elsevier: New York. p. 1-6.
  • Goldenberg H, et al. A DETAILED EVALUATION OF PROMAZINE METABOLISM. Proc Soc Exp Biol Med. 1964;115:1044-1051.
  • Wójcikowski J, et al. Contribution of human cytochrome p-450 isoforms to the metabolism of the simplest phenothiazine neuroleptic promazine. Br J Pharmacol. 2003;138(8):1465-1474.
  • Valoti M, et al. Dehalogenation and N-dealkylation of chlorpromazine as revealed by plasma concentrations of metabolites in a population of chronically medicated schizophrenics. Methods Find Exp Clin Pharmacol. 1992;14(6):445-450.
  • Hu OY, et al. Pharmacokinetics of promazine: I. Disposition in patients with acute viral hepatitis B. Biopharm Drug Dispos. 1990;11(7):557-568.
  • Daniel W, et al. The pharmacokinetics of promazine and its metabolites after acute and chronic administration to rats–a comparison with the pharmacokinetics of imipramine. Pol J Pharmacol. 1995;47(2):127-136.
  • Wu M, et al. [Suicide with prothipendyl]. Arch Kriminol. 1994;193(5-6):158-162.
  • Scharfetter J, et al. [QTc prolongation induced by intravenous sedation with Haloperidol, Prothipendyl and Lorazepam]. Neuropsychiatr. 2014;28(1):1-5.
  • Krämer M, et al. Confirmation of metabolites of the neuroleptic drug prothipendyl using human liver microsomes, specific CYP enzymes and authentic forensic samples-Benefit for routine drug testing. J Pharm Biomed Anal. 2017;145:517-524.
  • Krueger SK, et al. Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism. Pharmacol Ther. 2005;106(3):357-387.
  • Comission E.
  • Schotte A, et al. Risperidone compared with new and reference antipsychotic drugs: in vitro and in vivo receptor binding. Psychopharmacology (Berl). 1996;124(1-2):57-73.
  • Zernig G, et al., Adverse drug reactions, intoxications and interactions of neuropsychotropic medications, in NeuroPsychopharmacotherapy, Riederer P, et al., Editors. 2020, Springer. p. 1-53.
  • PharmGKB Clinical Annotation for CYP3A4*1, CYP3A4*20, CYP3A4*22; quetiapine (level 1A Metabolism/PK).
  • Elens L, et al. CYP3A4*22: promising newly identified CYP3A4 variant allele for personalizing pharmacotherapy. Pharmacogenomics. 2013;14(1):47-62.
  • Jensen NH, et al. N-desalkylquetiapine, a potent norepinephrine reuptake inhibitor and partial 5-HT1A agonist, as a putative mediator of quetiapine's antidepressant activity. Neuropsychopharmacology. 2008;33(10):2303-2312.
  • Nikisch G, et al. Cytochrome P450 and ABCB1 genetics: association with quetiapine and norquetiapine plasma and cerebrospinal fluid concentrations and with clinical response in patients suffering from schizophrenia. A pilot study. J Psychopharmacol. 2011;25(7):896-907.
  • Albantakis L, et al. Relationship Between Daily Dose, Serum Concentration, and Clinical Response to Quetiapine in Children and Adolescents with Psychotic and Mood Disorders. Pharmacopsychiatry. 2017;50(6):248-255.
  • Stark AD, et al. Interaction of the novel antipsychotic aripiprazole with 5-HT1A and 5-HT 2A receptors: functional receptor-binding and in vivo electrophysiological studies. Psychopharmacology (Berl). 2007;190(3):373-382.
  • Gefvert O, et al. D(2) and 5HT(2A) receptor occupancy of different doses of quetiapine in schizophrenia: a PET study. Eur Neuropsychopharmacol. 2001;11(2):105-110.
  • Hagberg G, et al. N-[11C]methylspiperone PET, in contrast to [11C]raclopride, fails to detect D2 receptor occupancy by an atypical neuroleptic. Psychiatry Res. 1998;82(3):147-160.
  • Kapur S, et al. A positron emission tomography study of quetiapine in schizophrenia: a preliminary finding of an antipsychotic effect with only transiently high dopamine D2 receptor occupancy. Arch Gen Psychiatry. 2000;57(6):553-559.
  • Kessler RM, et al. Occupancy of striatal and extrastriatal dopamine D2 receptors by clozapine and quetiapine. Neuropsychopharmacology. 2006;31(9):1991-2001.
  • Mamo DC, et al. Quetiapine extended-release versus immediate-release formulation: a positron emission tomography study. J Clin Psychiatry. 2008;69(1):81-86.
  • Yatham LN, et al. A Positron Emission Tomography Study of Norepinephrine Transporter Occupancy and Its Correlation with Symptom Response in Depressed Patients Treated with Quetiapine XR. Int J Neuropsychopharmacol. 2018;21(2):108-113.
  • Nyberg S, et al. Norepinephrine transporter occupancy in the human brain after oral administration of quetiapine XR. Int J Neuropsychopharmacol. 2013;16(10):2235-2244.
  • Rasmussen H, et al. Serotonin2A receptor blockade and clinical effect in first-episode schizophrenia patients treated with quetiapine. Psychopharmacology (Berl). 2011;213(2-3):583-592.
  • Rasmussen H, et al. Neocortical serotonin2A receptor binding predicts quetiapine associated weight gain in antipsychotic-naive first-episode schizophrenia patients. Int J Neuropsychopharmacol. 2014;17(11):1729-1736.
  • Nord M, et al. Comparison of D2 dopamine receptor occupancy after oral administration of quetiapine fumarate immediate-release and extended-release formulations in healthy subjects. Int J Neuropsychopharmacol. 2011;14(10):1357-1366.
  • Harrison TS, et al. Long-acting risperidone: a review of its use in schizophrenia. CNS Drugs. 2004;18(2):113-132.
  • Companies JP, “INVEGA: Highlights of prescibing information”, Editor^Editors. 2007.
  • Brunton LL, et al., Goodman and Gilman's the pharmacological basis of therapeutics. 13th ed. 2017, New York: McGraw-hill.
  • Schoretsanitis G, et al. Pharmacokinetics of risperidone in different application forms - Comparing long-acting injectable and oral formulations. Eur Neuropsychopharmacol. 2018;28(1):130-137.
  • Mannheimer B, et al. Risperidone and Venlafaxine Metabolic Ratios Strongly Predict a CYP2D6 Poor Metabolizing Genotype. Ther Drug Monit. 2016;38(1):127-134.
  • Hendset M, et al. Impact of CYP2D6 genotype on steady-state serum concentrations of risperidone and 9-hydroxyrisperidone in patients using long-acting injectable risperidone. J Clin Psychopharmacol. 2009;29(6):537-541.
  • Nyberg S, et al. Suggested minimal effective dose of risperidone based on PET-measured D2 and 5-HT2A receptor occupancy in schizophrenic patients. Am J Psychiatry. 1999;156(6):869-875.
  • Kapur S, et al. The D2 dopamine receptor occupancy of risperidone and its relationship to extrapyramidal symptoms: a PET study. Life Sci. 1995;57(10):Pl103-107.
  • Kodaka F, et al. Effect of risperidone on high-affinity state of dopamine D2 receptors: a PET study with agonist ligand [11C](R)-2-CH3O-N-n-propylnorapomorphine. Int J Neuropsychopharmacol. 2011;14(1):83-89.
  • Uchida H, et al. Therapeutic Window for Striatal Dopamine D2/3 Receptor Occupancy in Older Patients With Schizophrenia: A Pilot PET Study. Am J Geriatr Psychiatry. 2012.
  • Graff-Guerrero A, et al. Evaluation of Antipsychotic Dose Reduction in Late-Life Schizophrenia: A Prospective Dopamine D2/3 Receptor Occupancy Study. JAMA Psychiatry. 2015;72(9):927-934.
  • Talbot PS, et al. Extended characterisation of the serotonin 2A (5-HT2A) receptor-selective PET radiotracer 11C-MDL100907 in humans: quantitative analysis, test-retest reproducibility, and vulnerability to endogenous 5-HT tone. Neuroimage. 2012;59(1):271-285.
  • Eerdekens M, et al. Pharmacokinetics and tolerability of long-acting risperidone in schizophrenia. Schizophr Res. 2004;70(1):91-100.
  • Castberg I, et al. Serum concentrations of risperidone and 9-hydroxyrisperidone after administration of the long-acting injectable form of risperidone: evidence from a routine therapeutic drug monitoring service. Ther Drug Monit. 2005;27(1):103-106.
  • Remington G, et al. A PET study evaluating dopamine D2 receptor occupancy for long-acting injectable risperidone. Am J Psychiatry. 2006;163(3):396-401.
  • Uchida H, et al. Monthly administration of long-acting injectable risperidone and striatal dopamine D2 receptor occupancy for the management of schizophrenia. J Clin Psychiatry. 2008;69(8):1281-1286.
  • Wilton LV, et al. Comparative study of mortality rates and cardiac dysrhythmias in post-marketing surveillance studies of sertindole and two other atypical antipsychotic drugs, risperidone and olanzapine. J Psychopharmacol. 2001;15(2):120-126.
  • Perquin L, et al. A review of the efficacy, tolerability and safety of sertindole in clinical trials. CNS Drugs. 2004;18 Suppl 2:19-30; discussion 41-13.
  • Titier K, et al. Determination of myocardium to plasma concentration ratios of five antipsychotic drugs: comparison with their ability to induce arrhythmia and sudden death in clinical practice. Toxicol Appl Pharmacol. 2004;199(1):52-60.
  • Murdoch D, et al. Sertindole. CNS Drugs. 2006;20(3):233-255.
  • Wong SL, et al. Effects of food, antacid, and dosage form on the pharmacokinetics and relative bioavailability of sertindole in healthy volunteers. Biopharm Drug Dispos. 1997;18(6):533-541.
  • Wong SL, et al. Pharmacokinetics of sertindole in healthy young and elderly male and female subjects. Clin Pharmacol Ther. 1997;62(2):157-164.
  • Canal-Raffin M, et al. Simplified ultraviolet liquid chromatographic method for determination of sertindole, dehydrosertindole and norsertindole, in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2005;814(1):61-67.
  • Canal-Raffin M, et al. Myocardium distribution of sertindole and its metabolite dehydrosertindole in guinea-pigs. Biopharm Drug Dispos. 2006;27(4):171-179.
  • Wong SL, et al. Modeling of sertindole pharmacokinetic disposition in healthy volunteers in short term dose-escalation studies. J Pharm Sci. 1998;87(12):1629-1631.
  • H. Lundbeck A/S. Sertindole: summary of product characteritics. Copenhagen: H. Lundbeck A/S 2005 Sep.
  • Mauri MC, et al. Clinical pharmacokinetics of atypical antipsychotics: a critical review of the relationship between plasma concentrations and clinical response. Clin Pharmacokinet. 2007;46(5):359-388.
  • Drici MD, et al. Prolongation of QT interval in isolated feline hearts by antipsychotic drugs. J Clin Psychopharmacol. 1998;18(6):477-481.
  • Pilowsky LS, et al. In vivo effects on striatal dopamine D2 receptor binding by the novel atypical antipsychotic drug sertindole–a 123I IBZM single photon emission tomography (SPET) study. Psychopharmacology (Berl). 1997;130(2):152-158.
  • Kasper S, et al. Sertindole and dopamine D2 receptor occupancy in comparison to risperidone, clozapine and haloperidol - a 123I-IBZM SPECT study. Psychopharmacology (Berl). 1998;136(4):367-373.
  • Nyberg S, et al. Low striatal and extra-striatal D2 receptor occupancy during treatment with the atypical antipsychotic sertindole. Psychopharmacology (Berl). 2002;162(1):37-41.
  • Farde L, et al. D2 occupancy, extrapyramidal side effects and antipsychotic drug treatment: a pilot study with sertindole in healthy subjects. Int Clin Psychopharmacol. 1997;12 Suppl 1:S3-7.
  • Bigliani V, et al. Striatal and temporal cortical D2/D3 receptor occupancy by olanzapine and sertindole in vivo: a [123I]epidepride single photon emission tomography (SPET) study. Psychopharmacology (Berl). 2000;150(2):132-140.
  • Petit-Taboué MC, et al. Parametric PET imaging of 5HT2A receptor distribution with 18F-setoperone in the normal human neocortex. J Nucl Med. 1999;40(1):25-32.
  • Hietala J, et al. Sertindole is a serotonin 5-HT2c inverse agonist and decreases agonist but not antagonist binding to 5-HT2c receptors after chronic treatment. Psychopharmacology (Berl). 2001;157(2):180-187.
  • Gerlach J, et al. Sulpiride and haloperidol in schizophrenia: a double-blind cross-over study of therapeutic effect, side effects and plasma concentrations. The British Journal of Psychiatry: The Journal of Mental Science. 1985;147:283-288.
  • Svestka J, et al. [Results of treatment of schizophrenic and schizoaffective patients with sulpiride (Eglonyl Alkaloid) in comparison with perphenazine (Perfenazin Spofa)]. Ceskoslovenska Psychiatrie. 1990;86(3):145-156.
  • Mauri MC, et al. A risk-benefit assessment of sulpiride in the treatment of schizophrenia. Drug Safety. 1996;14(5):288-298.
  • Alfredsson G, et al. Relationships between drug concentrations in serum and CSF, clinical effects and monoaminergic variables in schizophrenic patients treated with sulpiride or chlorpromazine. Acta Psychiatrica Scandinavica. Supplementum. 1984;311:49-74.
  • Wiesel FA, et al. The pharmacokinetics of intravenous and oral sulpiride in healthy human subjects. European Journal of Clinical Pharmacology. 1980;17(5):385-391.
  • Helmy SA Therapeutic drug monitoring and pharmacokinetic compartmental analysis of sulpiride double-peak absorption profile after oral administration to human volunteers. Biopharmaceutics & Drug Disposition. 2013;34(5):288-301.
  • Baluom M, et al. Improved intestinal absorption of sulpiride in rats with synchronized oral delivery systems. Journal of Controlled Release: Official Journal of the Controlled Release Society. 2001;70(1-2):139-147.
  • Bressolle F, et al. Pharmacokinetics of sulpiride after intravenous administration in patients with impaired renal function. Clinical Pharmacokinetics. 1989;17(5):367-373.
  • Watanabe K, et al. Studies on intestinal absorption of sulpiride (3): intestinal absorption of sulpiride in rats. Biological & Pharmaceutical Bulletin. 2004;27(1):77-81.
  • Dos Santos Pereira JN, et al. The poorly membrane permeable antipsychotic drugs amisulpride and sulpiride are substrates of the organic cation transporters from the SLC22 family. The AAPS journal. 2014;16(6):1247-1258.
  • Li L, et al. Multiple organic cation transporters contribute to the renal transport of sulpiride. Biopharmaceutics & Drug Disposition. 2017;38(9):526-534.
  • Watanabe K, et al. Studies on intestinal absorption of sulpiride (1): carrier-mediated uptake of sulpiride in the human intestinal cell line Caco-2. Biological & Pharmaceutical Bulletin. 2002;25(7):885-890.
  • Blin J, et al. A method for the in vivo investigation of the serotonergic 5-HT2 receptors in the human cerebral cortex using positron emission tomography and 18F-labeled setoperone. J Neurochem. 1990;54(5):1744-1754.
  • DaSilva JN, et al. In vivo binding of [11C]SKF 75670 and [11C]SKF 82957 in rat brain: two dopamine D-1 receptor agonist ligands. Life Sci. 1996;58(19):1661-1670.
  • Wulff S, et al. Striatal D(2/3) Binding Potential Values in Drug-Naïve First-Episode Schizophrenia Patients Correlate With Treatment Outcome. Schizophr Bull. 2015;41(5):1143-1152.
  • Stone JM, et al. Non-uniform blockade of intrastriatal D2/D3 receptors by risperidone and amisulpride. Psychopharmacology (Berl). 2005;180(4):664-669.
  • Takano H, et al. Possible Role of Organic Cation Transporters in the Distribution of [(11)C]Sulpiride, a Dopamine D(2) Receptor Antagonist. J Pharm Sci. 2017;106(9):2558-2565.
  • Schou M, et al. Large Variation in Brain Exposure of Reference CNS Drugs: a PET Study in Nonhuman Primates. Int J Neuropsychopharmacol. 2015;18(10):pyv036.
  • Administration USFD Navane. 2009.
  • Simpson GM, et al. Blood levels of neuroleptics: state of the art. J Clin Psychiatry. 1985;46(5 Pt 2):22-28.
  • Yesavage JA, et al. Serum level monitoring of thiothixene in schizophrenia: acute single-dose levels at fixed doses. Am J Psychiatry. 1982;139(2):174-178.
  • Yesavage JA, et al. Correlation of thiothixene serum levels and age. Psychopharmacology (Berl). 1981;74(2):170-172.
  • Midha KK, et al. Kinetics of oral trifluoperazine disposition in man. Br J Clin Pharmacol. 1983;15(3):380-382.
  • Gaertner HJ, et al. Tissue metabolites of trifluorperazine, fluphenazine, prochlorperazine, and perphenazine. Kinetics in chronic treatment. Drug Metab Dispos. 1975;3(6):437-444.
  • Seo KA, et al. In vitro assay of six UDP-glucuronosyltransferase isoforms in human liver microsomes, using cocktails of probe substrates and liquid chromatography-tandem mass spectrometry. Drug Metab Dispos. 2014;42(11):1803-1810.
  • Midha KK, et al. A pharmacokinetic study of trifluoperazine in two ethnic populations. Psychopharmacology (Berl). 1988;95(3):333-338.
  • Uchaipichat V, et al. Selectivity of substrate (trifluoperazine) and inhibitor (amitriptyline, androsterone, canrenoic acid, hecogenin, phenylbutazone, quinidine, quinine, and sulfinpyrazone) “probes” for human udp-glucuronosyltransferases. Drug Metab Dispos. 2006;34(3):449-456.
  • Reimers A, et al. Frequencies of UGT1A4*2 (P24T) and *3 (L48V) and their effects on serum concentrations of lamotrigine. Eur J Drug Metab Pharmacokinet. 2016;41(2):149-155.
  • Benoit-Biancamano MO, et al. A pharmacogenetics study of the human glucuronosyltransferase UGT1A4. Pharmacogenet Genomics. 2009;19(12):945-954.
  • Janicak PG, et al. Trifluoperazine plasma levels and clinical response. J Clin Psychopharmacol. 1989;9(5):340-346.
  • Geodon Full Prescribing Information. 2001 [cited 2022 Nov 24]; Available from: www.accessdata.fda.gov/drugsatfda_docs/label/2014/020825s053,020919s040,s021483s013lbl.pdf.
  • Schmidt AW, et al. Ziprasidone: a novel antipsychotic agent with a unique human receptor binding profile. Eur J Pharmacol. 2001;425(3):197-201.
  • Huhn M, et al. Comparative efficacy and tolerability of 32 oral antipsychotics for the acute treatment of adults with multi-episode schizophrenia: a systematic review and network meta-analysis. Lancet (London, England). 2019;394(10202):939-951.
  • Drug USF Drug Approval Package Ziprasidone. 2001.
  • Hamelin BA, et al. The effect of timing of a standard meal on the pharmacokinetics and pharmacodynamics of the novel atypical antipsychotic agent ziprasidone. Pharmacotherapy. 1998;18(1):9-15.
  • Miceli JJ, et al. The effect of food on the absorption of oral ziprasidone. Psychopharmacol Bull. 2007;40(3):58-68.
  • Preskorn SH Pharmacokinetics and therapeutics of acute intramuscular ziprasidone. Clin Pharmacokinet. 2005;44(11):1117-1133.
  • Miceli JJ, et al. Single- and multiple-dose pharmacokinetics of ziprasidone under non-fasting conditions in healthy male volunteers. Br J Clin Pharmacol. 2000;49 Suppl 1(Suppl 1):5s-13s.
  • Prakash C, et al. Metabolism and excretion of a new antipsychotic drug, ziprasidone, in humans. Drug Metab Dispos. 1997;25(7):863-872.
  • Beedham C, et al. Ziprasidone metabolism, aldehyde oxidase, and clinical implications. J Clin Psychopharmacol. 2003;23(3):229-232.
  • Prakash C, et al. Identification of the major human liver cytochrome P450 isoform(s) responsible for the formation of the primary metabolites of ziprasidone and prediction of possible drug interactions. Br J Clin Pharmacol. 2000;49 Suppl 1(Suppl 1):35S-42S.
  • Miceli JJ, et al. The effect of carbamazepine on the steady-state pharmacokinetics of ziprasidone in healthy volunteers. Br J Clin Pharmacol. 2000;49 Suppl 1(Suppl 1):65S-70S.
  • Miceli JJ, et al. The effects of ketoconazole on ziprasidone pharmacokinetics–a placebo-controlled crossover study in healthy volunteers. Br J Clin Pharmacol. 2000;49 Suppl 1(Suppl 1):71s-76s.
  • Muirhead GJ, et al. Ziprasidone and the pharmacokinetics of a combined oral contraceptive. Br J Clin Pharmacol. 2000;49 Suppl 1(Suppl 1):49S-56S.
  • Apseloff G, et al. The effects of ziprasidone on steady-state lithium levels and renal clearance of lithium. Br J Clin Pharmacol. 2000;49 Suppl 1(Suppl 1):61S-64S.
  • Wilner KD, et al. Single- and multiple-dose pharmacokinetics of ziprasidone in healthy young and elderly volunteers. Br J Clin Pharmacol. 2000;49 Suppl 1(Suppl 1):15S-20S.
  • Sallee FR, et al. Single-dose pharmacokinetics and safety of ziprasidone in children and adolescents. J Am Acad Child Adolesc Psychiatry. 2006;45(6):720-728.
  • Aweeka F, et al. The pharmacokinetics of ziprasidone in subjects with normal and impaired renal function. Br J Clin Pharmacol. 2000;49 Suppl 1(Suppl 1):27S-33S.
  • Westin AA, et al. Treatment With Antipsychotics in Pregnancy: Changes in Drug Disposition. Clin Pharmacol Ther. 2018;103(3):477-484.
  • Grossman I, et al. Genetic determinants of variable metabolism have little impact on the clinical use of leading antipsychotics in the CATIE study. Genet Med. 2008;10(10):720-729.
  • Arranz MJ, et al. A pharmacogenetic intervention for the improvement of the safety profile of antipsychotic treatments. Transl Psychiatry. 2019;9(1):177.
  • Cherma MD, et al. Therapeutic drug monitoring of ziprasidone in a clinical treatment setting. Ther Drug Monit. 2008;30(6):682-688.
  • Jonsson AK, et al. A Compilation of Serum Concentrations of 12 Antipsychotic Drugs in a Therapeutic Drug Monitoring Setting. Ther Drug Monit. 2019;41(3):348-356.
  • Mauri MC, et al. Ziprasidone outcome and tolerability: a practical clinical trial with plasma drug levels. Pharmacopsychiatry. 2007;40(3):89-92.
  • Vogel F, et al. The use of ziprasidone in clinical practice: analysis of pharmacokinetic and pharmacodynamic aspects from data of a drug monitoring survey. Eur Psychiatry. 2009;24(3):143-148.
  • Lv D, et al. An Inter-Ethnic Comparison Study of Ziprasidone Plasma Levels, Dosage and Clinical Response in Patients with Schizophrenia. Psychiatry Investig. 2017;14(3):360-367.
  • Suzuki T, et al. Dopamine D2/3 occupancy of ziprasidone across a day: a within-subject PET study. Psychopharmacology (Berl). 2013;228(1):43-51.
  • Mamo D, et al. A PET study of dopamine D2 and serotonin 5-HT2 receptor occupancy in patients with schizophrenia treated with therapeutic doses of ziprasidone. Am J Psychiatry. 2004;161(5):818-825.
  • Bench CJ, et al. The time course of binding to striatal dopamine D2 receptors by the neuroleptic ziprasidone (CP-88,059-01) determined by positron emission tomography. Psychopharmacology (Berl). 1996;124(1-2):141-147.
  • Fischman AJ, et al. Positron emission tomographic analysis of central 5-hydroxytryptamine2 receptor occupancy in healthy volunteers treated with the novel antipsychotic agent, ziprasidone. J Pharmacol Exp Ther. 1996;279(2):939-947.
  • Otsuka Pharmaceutical Co. L (2016) “Aripiprazole: highlights of prescribing information.”.
  • Gründer G, et al. Aripiprazole: pharmacodynamics of a dopamine partial agonist for the treatment of schizophrenia. Pharmacopsychiatry. 2006;39 Suppl 1:S21-25.
  • Swainston Harrison T, et al. Aripiprazole: a review of its use in schizophrenia and schizoaffective disorder. Drugs. 2004;64(15):1715-1736.
  • Hart XM, et al. Therapeutic Reference Range for Aripiprazole in Schizophrenia Revised: a Systematic Review and Metaanalysis. Psychopharmacology (Berl). 2022;239(11):3377-3391.
  • Zhang X, et al. Association between aripiprazole pharmacokinetics and CYP2D6 phenotypes: A systematic review and meta-analysis. J Clin Pharm Ther. 2019;44(2):163-173.
  • Tveito M, et al. Impact of age and CYP2D6 genetics on exposure of aripiprazole and dehydroaripiprazole in patients using long-acting injectable versus oral formulation: relevance of poor and intermediate metabolizer status. Eur J Clin Pharmacol. 2020;76(1):41-49.
  • Kneller LA, et al. Influence of CYP2D6 Phenotypes on the Pharmacokinetics of Aripiprazole and Dehydro-Aripiprazole Using a Physiologically Based Pharmacokinetic Approach. Clin Pharmacokinet. 2021;60(12):1569-1582.
  • Zhang X, et al. Influence of CYP2D6 gene polymorphisms on the pharmacokinetics of aripiprazole in healthy Chinese subjects. Pharmacogenomics. 2021;22(4):213-223.
  • Jukic MM, et al. Effect of CYP2D6 genotype on exposure and efficacy of risperidone and aripiprazole: a retrospective, cohort study. Lancet Psychiatry. 2019;6(5):418-426.
  • Belmonte C, et al. Influence of CYP2D6, CYP3A4, CYP3A5 and ABCB1 Polymorphisms on Pharmacokinetics and Safety of Aripiprazole in Healthy Volunteers. Basic Clin Pharmacol Toxicol. 2018;122(6):596-605.
  • Sanchez Spitman AB, et al. Effect of CYP3A4*22, CYP3A5*3, and CYP3A combined genotypes on tamoxifen metabolism. Eur J Clin Pharmacol. 2017;73(12):1589-1598.
  • Lamba J, et al. PharmGKB summary: very important pharmacogene information for CYP3A5. Pharmacogenet Genomics. 2012;22(7):555-558.
  • Suzuki T, et al. Effects of genetic polymorphisms of CYP2D6, CYP3A5, and ABCB1 on the steady-state plasma concentrations of aripiprazole and its active metabolite, dehydroaripiprazole, in Japanese patients with schizophrenia. Ther Drug Monit. 2014;36(5):651-655.
  • Rafaniello C, et al. The predictive value of ABCB1, ABCG2, CYP3A4/5 and CYP2D6 polymorphisms for risperidone and aripiprazole plasma concentrations and the occurrence of adverse drug reactions. Pharmacogenomics J. 2018;18(3):422-430.
  • Koller D, et al. Effects of aripiprazole on pupillometric parameters related to pharmacokinetics and pharmacogenetics after single oral administration to healthy subjects. J Psychopharmacol. 2018;32(11):1212-1222.
  • Stelmach A, et al. Antipsychotic drug-aripiprazole against schizophrenia, its therapeutic and metabolic effects associated with gene polymorphisms. Pharmacol Rep. 2023;75(1):19-31.
  • Kwon JS, et al. Taq1A polymorphism in the dopamine D2 receptor gene as a predictor of clinical response to aripiprazole. Eur Neuropsychopharmacol. 2008;18(12):897-907.
  • Ramsay H, et al. Association between Dopamine Receptor D2 (DRD2) Variations rs6277 and rs1800497 and Cognitive Performance According to Risk Type for Psychosis: A Nested Case Control Study in a Finnish Population Sample. PLoS One. 2015;10(6):e0127602.
  • Chen SF, et al. HTR2A A-1438G/T102C polymorphisms predict negative symptoms performance upon aripiprazole treatment in schizophrenic patients. Psychopharmacology (Berl). 2009;205(2):285-292.
  • Koller D, et al. Effects of aripiprazole on circadian prolactin secretion related to pharmacogenetics in healthy volunteers. Basic Clin Pharmacol Toxicol. 2020;126(3):236-246.
  • Koller D, et al. The pharmacogenetics of aripiprazole-induced hyperprolactinemia: what do we know? Pharmacogenomics. 2020;21(9):571-574.
  • Sparshatt A, et al. A systematic review of aripiprazole–dose, plasma concentration, receptor occupancy, and response: implications for therapeutic drug monitoring. J Clin Psychiatry. 2010;71(11):1447-1456.
  • Nemoto K, et al. Effects of Paroxetine on Plasma Concentrations of Aripiprazole and Its Active Metabolite, Dehydroaripiprazole, in Japanese Patients With Schizophrenia. Therapeutic Drug Monitoring. 2012;34(2):188-192.
  • Lin S-K, et al. Aripiprazole and Dehydroaripiprazole Plasma Concentrations and Clinical Responses in Patients With Schizophrenia. Journal of Clinical Psychopharmacology. 2011;31(6):758-762.
  • Nakamura A, et al. Pharmacokinetic and pharmacodynamic interactions between carbamazepine and aripiprazole in patients with schizophrenia. Ther Drug Monit. 2009;31(5):575-578.
  • Veselinovic T, et al. Dopamine D2 Receptor Occupancy Estimated From Plasma Concentrations of Four Different Antipsychotics and the Subjective Experience of Physical and Mental Well-Being in Schizophrenia: Results From the Randomized NeSSy Trial. Journal of Clinical Psychopharmacology. 2019;39(6):550-560.
  • Hwang T-J, et al. Fast Versus Slow Strategy of Switching Patients With Schizophrenia to Aripiprazole From Other Antipsychotics. Journal of Clinical Psychopharmacology. 2015;35(6):635-644.
  • Kim E, et al. Predicting brain occupancy from plasma levels using PET: superiority of combining pharmacokinetics with pharmacodynamics while modeling the relationship. J Cereb Blood Flow Metab. 2012;32(4):759-768.
  • Kim E, et al. The relationship between antipsychotic D2 occupancy and change in frontal metabolism and working memory: A dual [(11)C]raclopride and [(18) F]FDG imaging study with aripiprazole. Psychopharmacology (Berl). 2013;227(2):221-229.
  • Ito H, et al. Effects of dopamine D2 receptor partial agonist antipsychotic aripiprazole on dopamine synthesis in human brain measured by PET with L-[β-11C]DOPA. PLoS One. 2012;7(9):e46488.
  • Takahata K, et al. Striatal and extrastriatal dopamine D2 receptor occupancy by the partial agonist antipsychotic drug aripiprazole in the human brain: a positron emission tomography study with [11C]raclopride and [11C]FLB457. Psychopharmacology (Berl). 2012;222(1):165-172.
  • Kegeles LS, et al. Dose-occupancy study of striatal and extrastriatal dopamine D2 receptors by aripiprazole in schizophrenia with PET and [18F]fallypride. Neuropsychopharmacology. 2008;33(13):3111-3125.
  • Mamo D, et al. Differential effects of aripiprazole on D(2), 5-HT(2), and 5-HT(1A) receptor occupancy in patients with schizophrenia: a triple tracer PET study. Am J Psychiatry. 2007;164(9):1411-1417.
  • Shin S, et al. The relationship between dopamine receptor blockade and cognitive performance in schizophrenia: a [(11)C]-raclopride PET study with aripiprazole. Transl Psychiatry. 2018;8(1):87.
  • Taylor DM, Barnes, T. R. E., & Young, A. H., The Maudsley Prescribing Guidelines in Psychiatry,. 13th Edition ed. 2018: John Wiley & Sons.
  • Ishigooka J, et al. Pharmacokinetics and Safety of Brexpiprazole Following Multiple-Dose Administration to Japanese Patients With Schizophrenia. J Clin Pharmacol. 2018;58(1):74-80.
  • Mauri MC, et al. Clinical Pharmacokinetics of Atypical Antipsychotics: An Update. Clin Pharmacokinet. 2018;57(12):1493-1528.
  • Frederiksen T, et al. Estimating the In Vivo Function of CYP2D6 Alleles through Population Pharmacokinetic Modelling of Brexpiprazole. Clin Pharmacol Ther. 2022.
  • Elmokadem A, et al. Brexpiprazole Pharmacokinetics in CYP2D6 Poor Metabolizers: Using Physiologically Based Pharmacokinetic Modeling to Optimize Time to Effective Concentrations. J Clin Pharmacol. 2022;62(1):66-75.
  • Otsuka Pharmaceutical Co, REXULTI® (brexpiprazole) tablets, for oral use, Editor^Editors. 2021.
  • Katzman MA, et al. Efficacy of adjunctive brexpiprazole on symptom clusters of major depressive disorder: A post hoc analysis of four clinical studies. J Affect Disord. 2022;316:201-208.
  • Vieta E, et al. Two randomized, double-blind, placebo-controlled trials and one open-label, long-term trial of brexpiprazole for the acute treatment of bipolar mania. J Psychopharmacol. 2021;35(8):971-982.
  • Girgis RR, et al. A positron emission tomography occupancy study of brexpiprazole at dopamine D2 and D3 and serotonin 5-HT1A and 5-HT2A receptors, and serotonin reuptake transporters in subjects with schizophrenia. Neuropsychopharmacology. 2020;45(5):786-792.
  • al. Ze Clinical Pharmacology and Biopharmaceutics Review of Brexpiprazole. Center for Drug Evaluation and Research, Food and Drug Administration, Application number 205422Orig1s000 and 205422Orig2s000. 2014.
  • Wong DF, et al. An open-label, positron emission tomography study of the striatal D(2)/D(3) receptor occupancy and pharmacokinetics of single-dose oral brexpiprazole in healthy participants. Eur J Clin Pharmacol. 2021;77(5):717-725.
  • Hope J, et al. Cariprazine: A new partial dopamine agonist with a familiar profile. Australas Psychiatry. 2022;30(3):382-385.
  • Citrome L Cariprazine for acute and maintenance treatment of adults with schizophrenia: an evidence-based review and place in therapy. Neuropsychiatr Dis Treat. 2018;14:2563-2577.
  • Citrome L Cariprazine: chemistry, pharmacodynamics, pharmacokinetics, and metabolism, clinical efficacy, safety, and tolerability. Expert Opin Drug Metab Toxicol. 2013;9(2):193-206.
  • Correll CU, et al. Relationship between the timing of relapse and plasma drug levels following discontinuation of cariprazine treatment in patients with schizophrenia: indirect comparison with other second-generation antipsychotics after treatment discontinuation. Neuropsychiatr Dis Treat. 2019;15:2537-2550.
  • Caccia S, et al. A new generation of antipsychotics: pharmacology and clinical utility of cariprazine in schizophrenia. Ther Clin Risk Manag. 2013;9:319-328.
  • Nakamura T, et al. Clinical pharmacology study of cariprazine (MP-214) in patients with schizophrenia (12-week treatment). Drug Des Devel Ther. 2016;10:327-338.
  • Mauri MC, et al. Clinical pharmacology of atypical antipsychotics: an update. EXCLI J. 2014;13:1163-1191.
  • Seneca N, et al. Occupancy of dopamine D2 and D3 and serotonin 5-HT1A receptors by the novel antipsychotic drug candidate, cariprazine (RGH-188), in monkey brain measured using positron emission tomography. Psychopharmacology (Berl). 2011;218(3):579-587.
  • Takano A, et al. The antipsychotic sultopride is overdosed–a PET study of drug-induced receptor occupancy in comparison with sulpiride. Int J Neuropsychopharmacol. 2006;9(5):539-545.
  • Pharma S Packet insert of Lullan Tablets. 2022.
  • Mizuno Y, et al. Effects of SM-9018 on hepatic drug metabolizing enzyme systems in rats. Kiso to Rinsho. 1997;31:789-797.
  • Suzuki Y, et al. The wide variability of perospirone metabolism and the effect of perospirone on prolactin in psychiatric patients. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(6):830-833.
  • Yasui-Furukori N, et al. Steady-state pharmacokinetics of a new antipsychotic agent perospirone and its active metabolite, and its relationship with prolactin response. Ther Drug Monit. 2004;26(4):361-365.
  • Arakawa R, et al. Dopamine D2 receptor occupancy by perospirone: a positron emission tomography study in patients with schizophrenia and healthy subjects. Psychopharmacology (Berl). 2010;209(4):285-290.
  • Sekine Y, et al. Perospirone is a new generation antipsychotic: evidence from a positron emission tomography study of serotonin 2 and D2 receptor occupancy in the living human brain. J Clin Psychopharmacol. 2006;26(5):531-533.
  • Tanaka O, et al. Single oral dose kinetics of zotepine and its relationship to prolactin response and side effects. Ther Drug Monit. 1998;20(1):117-119.
  • Shiraga T, et al. Identification of cytochrome P450 enzymes involved in the metabolism of zotepine, an antipsychotic drug, in human liver microsomes. Xenobiotica. 1999;29(3):217-229.
  • Kondo T, et al. Possible inhibitory effect of diazepam on the metabolism of zotepine, an antipsychotic drug. Psychopharmacology (Berl). 1996;127(4):311-314.
  • Kondo T, et al. Adverse effects of zotepine and their relationship to serum concentrations of the drug and prolactin. Ther Drug Monit. 1994;16(2):120-124.
  • Barnas C, et al. In vivo (123)I IBZM SPECT imaging of striatal dopamine 2 receptor occupancy in schizophrenic patients. Psychopharmacology (Berl). 2001;157(3):236-242.
  • Tauscher J, et al. Striatal dopamine-2 receptor occupancy as measured with [123I]iodobenzamide and SPECT predicted the occurrence of EPS in patients treated with atypical antipsychotics and haloperidol. Psychopharmacology (Berl). 2002;162(1):42-49.
  • Karamperis K, et al. Economic evaluation in psychiatric pharmacogenomics: a systematic review. Pharmacogenomics J. 2021;21(4):533-541.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.