112
Views
0
CrossRef citations to date
0
Altmetric
Articles

Variations in heavy metal concentrations among trophic levels of the food webs in two agroecosystems

ORCID Icon, , &
Pages 21-30 | Received 29 Mar 2018, Accepted 11 Feb 2019, Published online: 20 May 2019

References

  • Abduljalee SA, Shuhaimi-Othman M, Babji A. 2012. Assessment of trace metals contents in chicken (Gallus gallus domesticus) and quail (Coturnix coturnix japonica) tissues from Selangor (Malaysia). Journal of Environmental Science and Technology 5: 441–451. doi: 10.3923/jest.2012.441.451
  • Alford RA, Richards SJ. 1999. Global amphibian declines: a problem in applied ecology. Annual Review of Ecology and Systematics 133–165. doi: 10.1146/annurev.ecolsys.30.1.133
  • Ali H, Khan E. 2018. Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs—Concepts and implications for wildlife and human health. Human and Ecological Risk Assessment: An International Journal: DOI: 10.1080/10807039.2018.1469398.
  • Anderson R, Vinikour W, Brower J. 1978. The distribution of Cd, Cu, Pb and Zn in the biota of two freshwater sites with different trace metal inputs. Ecography 1: 377–384. doi: 10.1111/j.1600-0587.1978.tb00973.x
  • Annalisa Z, Giulia A, Ferrante M, Carpene E, Gloria I, Lucisano A. 2008. Metal concentrations in the liver and kidney of raptor species from the Calabria region, Italy. Acta Veterinaria 58: 315–324. doi: 10.2298/AVB0804315Z
  • AVMA (American Veterinary Medical Association). 2013. AVMA Guidelines for the Euthanasia of Animals: 2013 Edition. Available at www.avma.org/KB/Policies/Documents/euthanasia.pdf [Accessed 7 March 2015].
  • Barakat AO, Mostafa A, Wade TL, Sweet ST, El Sayed NB. 2012. Assessment of persistent organochlorine pollutants in sediments from Lake Manzala, Egypt. Marine Pollution Bulletin 64: 1713–1720. doi: 10.1016/j.marpolbul.2012.03.022
  • Bartels H, Bartels R, Baumann R, Fons R, Jurgens K, Wright P. 1979. Blood oxygen transport and organ weights of two shrew species (S. etruscus and C. russula). American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 236: 221–224. doi: 10.1152/ajpregu.1979.236.3.R221
  • Bergeron CM, Husak JF, Unrine JM, Romanek CS, Hopkins WA. 2007. Influence of feeding ecology on blood mercury concentrations in four species of turtles. Environmental Toxicology and Chemistry 26: 1733–1741. doi: 10.1897/06-594R.1
  • Bonilla-Valverde D, Ruiz-Laguna J, Muñoz A, Ballesteros J, Lorenzo F, Gómez-Ariza J, López-Barea J. 2004. Evolution of biological effects of Aznalcóllar mining spill in the Algerian mouse (Mus spretus) using biochemical biomarkers. Toxicology 197: 122–137. doi: 10.1016/j.tox.2003.12.010
  • Bonnet X, Shine R, Lourdais O. 2002. Taxonomic chauvinism. Trends in Ecology and Evolution 17: 1–3. doi: 10.1016/S0169-5347(01)02381-3
  • Bream AS, Amer MS, Haggag AA, Mahmoud MA. 2017. Fresh water quality assessment using aquatic insects as biomonitors in Bahr Youssef stream, Fayoum, Egypt. Al Azhar Bulletin of Science 9: 75–90.
  • Burger J, Gochfeld M, Jeitner C, Zappalorti R, Pittfield T, DeVito E. 2017. Arsenic, cadmium, chromium, lead, mercury and selenium concentrations in pine snakes (Pituophis melanoleucus) from the New Jersey Pine Barrens. Archives of Environmental Contamination and Toxicology 72: 586–595. doi: 10.1007/s00244-017-0398-5
  • Butt A, Aziz N. 2016. Bioaccumulation of heavy metals mixture and its effect on detoxification enzymes of wolf spider, Pardosa oakleyi. Journal of Animal and Plant Sciences 26: 1507–1515.
  • Campbell KR, Campbell TS. 2001. The accumulation and effects of environmental contaminants on snakes: a review. Environmental Monitoring and Assessment 70: 253–301. doi: 10.1023/A:1010731409732
  • Eisler R. 1986. Zinc hazards to fish, wildlife, and invertebrates: a synoptic review. Biological report 10.
  • El-Moselhy KM, Othman A, El-Azem HA, El-Metwally M. 2014. Bioaccumulation of heavy metals in some tissues of fish in the Red Sea, Egypt. Egyptian Journal of Basic and Applied Sciences 1: 97–105. doi: 10.1016/j.ejbas.2014.06.001
  • El-Sharabasy HM, Ibrahim A. 2010. Communities of oribatid mites and heavy metal accumulation in oribatid species in agricultural soils in Egypt impacted by waste water. Plant Protection Science 46: 159–170. doi: 10.17221/31/2010-PPS
  • El-Shazly MM, Omar WA, Edmardash YA, Ibrahim MS, Elzayat EI, El-Sebeay II, Soliman MM. 2016. Area reduction and trace element pollution in Nile Delta wetland ecosystems. African Journal of Ecology 55: 391–401. doi: 10.1111/aje.12264
  • Ferreira A. 2011. Assessment of heavy metals in Egretta thula: case study: Coroa Grande mangrove, Sepetiba Bay, Rio de Janeiro, Brazil. Brazilian Journal of Biology 71: 77–82. doi: 10.1590/S1519-69842011000100012
  • Gall JE, Boyd RS, Rajakaruna N. 2015. Transfer of heavy metals through terrestrial food webs: a review. Environmental Monitoring and Assessment 187: 1–21. doi: 10.1007/s10661-015-4436-3
  • Gasparik J, Massanyi P, Slamecka J, Fabis M, Jurcik R. 2004. Concentration of selected metals in liver, kidney, and muscle of the red deer (Cervus elaphus). Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering 39: 2105–2111.
  • Goyer RA. 1997. Toxic and essential metal interactions. Annual Review of Nutrition 17: 37–50. doi: 10.1146/annurev.nutr.17.1.37
  • Henry P. 2000. Aspects of amphibian anatomy and physiology. In: Sparling DW, Linder G, Bishop C (Eds), Ecotoxicology of amphibians and reptiles. pp 141–179. Pensacola, FL: Society of Environmental Toxicology and Chemistry (SETAC).
  • Hernández LM, Gómara B, Fernández M, Jiménez B, González M, Baos R, Suner M. 1999. Accumulation of heavy metals and As in wetland birds in the area around Donana National Park affected by the Aznalcollar toxic spill. The Science of the Total Environment 242: 293–308. doi: 10.1016/S0048-9697(99)00397-6
  • Hirao Y, Patterson CC. 1974. Lead aerosol pollution in the High Sierra overrides natural mechanism which exclude lead from a food chain. Science 184: 989–992. doi: 10.1126/science.184.4140.989
  • Hopkins WA. 2000. Reptile toxicology: challenges and opportunities on the last frontier in vertebrate ecotoxicology. Environmental Toxicology and Chemistry 19: 2391–2393. doi: 10.1002/etc.5620191001
  • Hunter B, Johnson M. 1982. Food chain relationships of copper and cadmium in contaminated grassland ecosystems. Oikos 38: 108–117. doi: 10.2307/3544572
  • Intamat S, Phoonaploy U, Sriuttha M, Tengjaroenkul B, Neeratanaphan L. 2016. Heavy metal accumulation in aquatic animals around the gold mine area of Loei province, Thailand. Human and Ecological Risk Assessment 22: 1418–1432. doi: 10.1080/10807039.2016.1187062
  • Karadjova I, Markova E. 2009. Metal accumulation in insects (Orthoptera, Acrididae) near a copper smelter and copper-flotation factory (Pirdop, Bulgaria). Biotechnology, Biotechnological Equipment 23: 204–207. doi: 10.1080/13102818.2009.10818401
  • Laurinolli M, Bendell-Young L. 1996. Copper, zinc, and cadmium concentrations in Peromyscus maniculatus sampled near an abandoned copper mine. Archives of Environmental Contamination and Toxicology 30: 481–486. doi: 10.1007/BF00213399
  • Lebedeva N. 1997. Accumulation of heavy metals by birds in the southwest of Russia. Russian Journal of Ecology 28: 41–46.
  • Licata P, Naccari F, Lo Turco V, Rando R, Di Bella G, Dugo G. 2010. Levels of Cd (II), Mn (II), Pb (II), Cu (II), and Zn (II) in common buzzard (Buteo buteo) from Sicily (Italy) by derivative stripping potentiometry. International Journal of Ecology. doi: 10.1155/2010/541948.
  • Linde A, Sanchez-Galan S, Garcia-Vazquez E. 2004. Heavy metal contamination of European eel (Anguilla anguilla) and brown trout (Salmo trutta) caught in wild ecosystems in Spain. Journal of Food Protection 67: 2332–2336. doi: 10.4315/0362-028X-67.10.2332
  • Ljungvall K, Magnusson U, Korvela M, Norrby M, Bergquist J, Persson S. 2017. Heavy metal concentrations in female wild mink (Neovison vison) in Sweden: Sources of variation and associations with internal organ weights. Environmental Toxicology and Chemistry 36: 2030–2035. doi: 10.1002/etc.3717
  • Ma W, Talmage S. 2001. Insectivora. In: Shore R, Rattner B (Eds), Ecotoxicology of wild mammals. Ecological and Environmental Toxicology Series. pp 123–158. New York: John Wiley and Sons Ltd.
  • Mackay WP, Mena R, Gardea J, Pingatore N. 1997. Lack of bioaccumulation of heavy metals in an arthropod community in the northern Chihuahuan Desert. Journal of the Kansas Entomological Society: 329–334.
  • Malik RN, Ghaffar B, Hashmi MZ. 2013. Trace metals in Ganges soft-shell turtle (Aspideretes gangeticus) from two barrage: Baloki and Rasul, Pakistan. Environmental Science and Pollution Research International 20: 8263–8273. doi: 10.1007/s11356-013-1805-8
  • Marques CC, Gabriel SI, Pinheiro T, Viegas-Crespo AM, da Luz Mathias M, Bebianno MJ. 2008. Metallothionein levels in Algerian mice (Mus spretus) exposed to elemental pollution: An ecophysiological approach. Chemosphere 71: 1340–1347. doi: 10.1016/j.chemosphere.2007.11.024
  • Márquez-Ferrando R, Santos X, Pleguezuelos JM, Ontiveros D. 2009. Bioaccumulation of heavy metals in the lizard Psammodromus algirus after a tailing-dam collapse in Aznalcóllar (Southwest Spain). Archives of Environmental Contamination and Toxicology 56: 276–285. doi: 10.1007/s00244-008-9189-3
  • Milton A, Cooke J, Johnson M. 2003. Accumulation of Lead, Zinc, and Cadmium in a Wild Population of Clethrionomys glareolus from an abandoned lead mine. Archives of Environmental Contamination and Toxicology 44: 405–411. doi: 10.1007/s00244-002-2014-5
  • Mukhacheva S. 2017. Long-term dynamics of heavy metal concentrations in the food and liver of bank voles (Myodes glareolus) in the period of reduction of emissions from a copper smelter. Russian Journal of Ecology 48: 559–568. doi: 10.1134/S1067413617060078
  • Newman MC, Unger M. 2003. Fundamentals of Ecotoxicology. London: Taylor & Francis Ltd.
  • Nummelin M, Lodenius M, Tulisalo E, Hirvonen H, Alanko T. 2007. Predatory insects as bioindicators of heavy metal pollution. Environmental Pollution 145: 339–347. doi: 10.1016/j.envpol.2006.03.002
  • Pereira R, Pereira M, Ribeiro R, Gonçalves F. 2006. Tissues and hair residues and histopathology in wild rats (Rattus rattus L.) and Algerian mice (Mus spretus Lataste) from an abandoned mine area (Southeast Portugal). Environmental Pollution 139: 561–575. doi: 10.1016/j.envpol.2005.04.038
  • Phipps T, Tank SL, Wirtz J, Brewer L, Coyner A, Ortego LS, Fairbrother A. 2002. Essentiality of nickel and homeostatic mechanisms for its regulation in terrestrial organisms. Environmental Reviews 10: 209–261. doi: 10.1139/a02-009
  • Rogival D, Scheirs J, Blust R. 2007. Transfer and accumulation of metals in a soil–diet–wood mouse food chain along a metal pollution gradient. Environmental Pollution 145: 516–528. doi: 10.1016/j.envpol.2006.04.019
  • Sánchez-Chardi A, Marques CC, Nadal J, da Luz Mathias M. 2007. Metal bioaccumulation in the greater white-toothed shrew, Crocidura russula, inhabiting an abandoned pyrite mine site. Chemosphere 67: 121–130. doi: 10.1016/j.chemosphere.2006.09.009
  • Sánchez-Chardi A, Ribeiro CAO, Nadal J. 2009. Metals in liver and kidneys and the effects of chronic exposure to pyrite mine pollution in the shrew Crocidura russula inhabiting the protected wetland of Doñana. Chemosphere 76: 387–394. doi: 10.1016/j.chemosphere.2009.03.036
  • Shaapera U, Nnamonu LA, Eneji IS. 2013. Assessment of heavy metals in Rana esculenta organs from River Guma, Benue State Nigeria. American Journal of Analytical Chemistry 4: 496–500. doi: 10.4236/ajac.2013.49063
  • Shelby J, Mendonça M. 2001. Comparison of reproductive parameters in male yellow-blotched map turtles (Graptemys flavimaculata) from a historically contaminated site and a reference site. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology 129: 233–242. doi: 10.1016/S1095-6433(01)00320-8
  • Singh P, Dey M, Ramanujam SN. 2016. A study on bioaccumulation of heavy metals in two anuran tadpoles: Clinotarsus Alticola and Leptobrachium Smithi From Rosekandy Tea Estate, Cachar, Assam. Current World Environment 11: 325–332. doi: 10.12944/CWE.11.1.39
  • Soliman MM, Haggag AA, El-Shazly MM. 2017. Assessment of grasshopper diversity along a pollution gradient in the Al-Tebbin region, South Cairo, Egypt. Journal of Entomology and Zoology Studies 5: 298–306.
  • Sparling DW, Linder G, Bishop CA, Krest S. 2010. Ecotoxicology of amphibians and reptiles: CRC Press.
  • SPSS Statistics. 2008. SPSS Statistics software for windows, release 17.0. Chicago, IL: SPSS Statistics.
  • Taiwo IE, Henry AN, Imbufe AP, Adetoro OO. 2014. Heavy metal bioaccumulation and biomarkers of oxidative stress in the wild African tiger frog, Hoplobatrachus occipitalis. African Journal of Environmental Science and Technology 8: 6–15. doi: 10.5897/AJEST2013.603
  • Talmage SS, Walton BT. 1991. Small mammals as monitors of environmental contaminants Reviews of Environmental Contamination and Toxicology.pp. 47–145. Springer. doi: 10.1007/978-1-4612-3078-6_2
  • Todd BD, Willson JD, Gibbons JW. 2010. The global status of reptiles and causes of their decline. In: Sparling DW, Linder G, Bishop CA, Krest S (Eds). pp 47-67. Ecotoxicology of amphibians and reptiles. Boca Raton: CRC Press.
  • Torres KC, Johnson ML. 2001. Bioaccumulation of metals in plants, arthropods, and mice at a seasonal wetland. Environmental Toxicology and Chemistry 20: 2617–2626. doi: 10.1002/etc.5620201130
  • van Riper C, Lester MB. 2016. Changing levels of heavy metal accumulation in birds at Tumacacori National Historic Park along the Upper Santa Cruz River Watershed in southern Arizona. In: Weber S (Ed.), Engagement, Education, and Expectations—The Future of Parks and Protected Areas: Proceedings of the 2015 George Wright Society Conference on Parks, Protected Areas, and Cultural Sites. pp 123–128. Hancock, Michigan: George Wright Society.
  • van Straalen NM, van Wensem J. 1986. Heavy metal content of forest litter arthropods as related to body-size and trophic level. Environmental Pollution Series A, Ecological and Biological 42: 209–221.
  • Vandecasteele B, Samyn J, Quataert P, Muys B, Tack FM. 2004. Earthworm biomass as additional information for risk assessment of heavy metal biomagnification: a case study for dredged sediment-derived soils and polluted floodplain soils. Environmental Pollution 129: 363–375. doi: 10.1016/j.envpol.2003.12.007
  • Vizzini S, Costa V, Tramati C, Gianguzza P, Mazzola A. 2013. Trophic transfer of trace elements in an isotopically constructed food chain from a semi-enclosed marine coastal area (Stagnone di Marsala, Sicily, Mediterranean). Archives of Environmental Contamination and Toxicology 65: 642–653. doi: 10.1007/s00244-013-9933-1
  • Yan X, Liu M, Zhong J, Guo J, Wu W. 2018. How human activities affect heavy metal contamination of soil and sediment in a long-term reclaimed area of the Liaohe River Delta, North China. Sustainability 10: 338. doi: 10.3390/su10020338
  • Zhang C, Song N, Zeng GM, Jiang M, Zhang JC, Hu XJ, Zhen JM. 2014. Bioaccumulation of zinc, lead, copper, and cadmium from contaminated sediments by native plant species and Acrida cinerea in South China. Environmental Monitoring and Assessment 186: 1735–1745. doi: 10.1007/s10661-013-3489-4
  • Zhang Z, Wang Q, Zheng D, Zheng N, Lu X. 2010. Mercury distribution and bioaccumulation up the soil-plant-grasshopper- spider food chain in Huludao City, China. Journal of Environmental Sciences (China) 22: 1179–1183. doi: 10.1016/S1001-0742(09)60235-7
  • Zocche JJ, Damiani AP, Hainzenreder G, Mendonça RÁ, Peres PB, dos Santos CEI, Debastiani R, Dias JF, de Andrade VM. 2013. Assessment of heavy metal content and DNA damage in Hypsiboas faber (anuran amphibian) in coal open-casting mine. Environmental Toxicology and Pharmacology 36: 194–201. doi: 10.1016/j.etap.2013.03.015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.