1,119
Views
5
CrossRef citations to date
0
Altmetric
Articles

Electrochemical and spectrophotometric properties of polymers based on derivatives of di- and triphenylamines as promising materials for electronic applications

, &
Pages 770-779 | Received 18 May 2015, Accepted 23 Jul 2015, Published online: 26 Aug 2015

References

  • Inzelt G, Pineri M, Schultze JW, Vorotyntsev MA. Electron and proton conducting polymers: recent developments and prospects. Electrochim. Acta. 2001;45:2403–2421.
  • Sariciftci NS, Kuzmany H, Neugebauer H, Neckel A. Structural and electronic transitions in polyaniline: a Fourier transform infrared spectroscopic study. J. Chem. Phys. 1990;92:4530–4539.10.1063/1.457765
  • Camalet JL, Lacroix JC, Aeiyach S, Chane-Ching K, Lacaze PC. Electrosynthesis of adherent polyaniline films on iron and mild steel in aqueous oxalic acid medium. Synth. Met. 1998;93:133–142.10.1016/S0379-6779(97)04099-X
  • Salaneck SW, Huang WS, Lundstrom I, Macdiarmid AG. A two-dimensional-surface ‘state diagram’ for polyaniline. Synth. Met. 1986;13:291–297.10.1016/0379-6779(86)90190-6
  • Guay J, Dao LH. Formation of poly(4-phenylaniline) by electropolymerization of 4-aminobiphenyl or diphenylamine. J. Electroanal. Chem. 1989;274:135–142.10.1016/0022-0728(89)87035-4
  • Hayat U, Dodd PN, Baker GH. Electrochemical synthesis and study of polydiphenylamine. J. Electroanal. Chem. Interfacial Electrochem. 1987;220:287–294.10.1016/0022-0728(87)85115-X
  • Yang CY, Smith P, Heeger A, Cao Y, Osterholm JE. Electron diffraction studies of the structure of polyaniline-dodecylbenzenesulfonate. Polymer. 1994;35:1142–1147.10.1016/0032-3861(94)90004-3
  • Athawale AA, Deore BA, Chabukswar VV. Studies on poly(diphenylamine) synthesized electrochemically in nonaqueous media. Mater. Chem. Phys. 1999;58:94–100.10.1016/S0254-0584(98)00258-2
  • Comisso N, Daolio S, Mengoli G, Salmaso R, Zecchin S, Zotti G. Chemical and electrochemical synthesis and characterization of polydiphenylamine and poly-N-methylaniline. J. Electroanal. Chem. Interfacial Electrochem. 1988;255:97–110.10.1016/0022-0728(88)80007-X
  • de Santana H, Temperini MLA, Rubim JC. In situ resonance Raman and reflectance spectroscopic study of the electrochemical oxidation of diphenylamine. J. Electroanal. Chem. 1993;356:145–155.10.1016/0022-0728(93)80516-K
  • Chung CY, Wen TC, Gopalan A. Identification of electrochromic sites in poly(diphenylamine) using a novel absorbance–potential–wavelength profile. Electrochim. Acta. 2001;47:423–431.10.1016/S0013-4686(01)00742-3
  • Kunugi Y, Tabakovic I, Canavesi A, Miller L. Light-emitting diodes based on linear and starburst electro-oligomerized thienyltriphenylamines. Synth. Met. 1997;89:227–229.10.1016/S0379-6779(97)81223-4
  • Tang CW, VanSlyke SA. Organic electroluminescent diodes. Appl. Phys. Lett. 1987;51:913–915.10.1063/1.98799
  • Chang S-C, Liu J, Bharathan J, Yang Y, Onohara J, Kido J. Multicolor organic light-emitting diodes processed by hybrid inkjet printing. Adv. Mater. 1999; 11: 734–737.10.1002/(ISSN)1521-4095
  • Bach U, De Cloedt K, Spreitzer H, Grätzel M. Characterization of hole transport in a new class of spiro-linked oligotriphenylamine compounds. Adv. Mater. 2000;12:1060–1063.10.1002/(ISSN)1521-4095
  • Mitschke U, Osteritz EM, Dedaerdemaeker T, et al. A novel series of p−n diblock light-emitting copolymers based on oligothiophenes and 1,4-Bis(oxadiazolyl)-2,5-dialkyloxybenzene. Macromolecules. 1999;32:118–126.
  • Kuwabara Y, Ogawa H, Inada H, Noma N, Shirota Y. Thermally stable multilared organic electroluminescent devices using novel starburst molecules, 4,4′,4″-Tri(N-carbazolyl)triphenylamine (TCTA) and 4,4′,4″-Tris(3-methylphenylphenylamino)triphenylamine (m-MTDATA), as hole-transport materials. Adv. Mater. 1994;6:677–679.10.1002/(ISSN)1521-4095
  • Tanaka S, Takeuchi K, Asai M, Iso T, Ueda M. Preparation of hyperbranched copolymers constituted of triphenylamine and phenylene units. Synth. Met. 2001;119:139–140.10.1016/S0379-6779(00)01268-6
  • Yamamoto K, Higuchi M, Uchida K, Kojima Y. Synthesis and electrochemical properties of oligo- and poly(thienylphenylamine)s. Macromolecules. 2002;35:5782–5788.10.1021/ma011018c
  • Kvarnström C, Petr A, Damlin P, Lindfors T, Ivaska A, Dunsch L. Raman and FTIR spectroscopic characterization of electrochemically synthesized poly(triphenylamine), PTPA. J. Solid State Electrochem. 2002;6:505–512.10.1007/s10008-002-0275-6
  • Sim J, Ueno E, Natori I, Ha J, Sato H. Oxidation polymerization of N-butyl-N,N-diphenylamine (BDPA) and N-4-butylphenyl-N,N-diphenylamine (BTPA). Synth. Met. 2008; 158: 345–349.10.1016/j.synthmet.2008.02.005
  • Bui T-T, Beouch L, Sallenave X, Goubard F. Carbazol-N-yl and diphenylamino end-capped triphenylamine-based molecular glasses: synthesis, thermal, and optical properties. Tetrahedron Lett. 2013;54:4277–4280.10.1016/j.tetlet.2013.05.152
  • Idzik K, Sołoducho J, Łapkowski M, Golba S. Development of structural characterization and physicochemical behaviour of triphenylamine blocks. Electrochim. Acta. 2008;53:5665–5669.10.1016/j.electacta.2008.03.019
  • Idzik K, Sołoducho J, Cabaj J, Mosiądz M, Łapkowski M, Golba S. Novel aspects of a convenient synthesis and of electroproperties of derivatives based on diphenylamine. Helv. Chim. Acta. 2008;91:618–627.10.1002/(ISSN)1522-2675
  • Wang B-C, Liao H-R, Chang J-C, Chen L, Yeh JT. Electronic structure and molecular orbital study of hole-transport material triphenylamine derivatives. J. Lumin. 2007; 124: 333–342.10.1016/j.jlumin.2005.11.016
  • Nelson RF, Adams RN. Anodic oxidation pathways of substituted triphenylamines. II. Quantitative studies of benzidine formation. J. Am. Chem. Soc. 1968;90:3925–3930.10.1021/ja01017a004
  • Fehér K, Inzelt G. Electrochemical quartz crystal microbalance study of formation and redox transformations of poly(diphenylamine). Electrochim. Acta. 2002;47:3551–3559.10.1016/S0013-4686(02)00359-6
  • Inzelt G. Cyclic voltammetry of solid diphenylamine crystals immobilized on an electrode surface and in the presence of an aqueous solution. J. Solid State Electrochem. 2002;6:265–271.10.1007/s100080100223
  • Seo ET, Nelson RF, Fritsch JM, Marcoux LS, Leedy DW, Adams RN. Anodic oxidation pathways of aromatic amines. Electrochemical and electron paramagnetic resonance studies. J. Am. Chem. Soc. 1966;88:3498–3503.10.1021/ja00967a006
  • Wang H-Y, Chen L-F, Zhu X-L, Wang Ch, Wan Y, Wu H. Spectral studies of multi-branched fluorescence dyes based on triphenylpyridine core. Spectrochim. Acta, Part A. 2014;121:355–362.10.1016/j.saa.2013.10.087
  • Wu G, Kong F, Li J, et al. Triphenylamine-based organic dyes with julolidine as the secondary electron donor for dye-sensitized solar cells. J. Power Sources. 2013;243:131–137.10.1016/j.jpowsour.2013.05.188
  • Yang P-C, Wu H, Lee C-L, Chen W-C, He H-J, Chen M-T, Triphenylamine-based linear conjugated polyfluorenes with various pendant groups: synthesis, characterization, and ion responsive properties. Polymer. 2013;54:1080–1090.10.1016/j.polymer.2012.12.071
  • Kochapradist P, Prachumrak N, Tarsang R, et al. Multi-triphenylamine-substituted carbazoles: synthesis, characterization, properties, and applications as hole-transporting materials. Tetrahedron Lett. 2013;54:3683–3687.10.1016/j.tetlet.2013.05.007
  • Shen S, Gao L, He Ch, Zhang Z, Sun Q, Li Y. A star-shaped oligothiophene with triphenylamine as core and octyl cyanoacetate as end groups for solution-processed organic solar cells. Org. Electron. 2013;14:875–881.10.1016/j.orgel.2012.12.030
  • Chen S, Gao Q, Zhao J, Cui C, Yang W, Zhang X. Electrochemical Synthesis and Characterization of a new electrochromic copolymer based on 2,2'-bithiophene and tris[4-(2-Thienyl)phenyl]amine. Int. J. Electrochem. Sci. 2012;7:9095–9112.
  • Chahma M, Gilroy JB, Hicks RG. Linear and branched electroactive polymers based on ethylenedioxythiophene–triarylamine conjugates. J. Mater. Chem. 2007;17:4768–4771.10.1039/b711693d
  • Cremer J, Briehn CA. Novel highly fluorescent triphenylamine-based oligothiophenes. Chem. Mater. 2007;19:4155–4165.10.1021/cm0700448
  • Luponosov YN, Solodukhin AN, Ponomarenko SA. Branched triphenylamine-based oligomers for organic electronics. Polym. Sci. Ser. C. 2014;56:104–134.10.1134/S181123821401007X
  • Sek D, Iwan A, Jarzabek B, et al. Hole transport triphenylamine−azomethine conjugated system: synthesis and optical, photoluminescence, and electrochemical properties. Macromolecules. 2008;41:6653–6663.10.1021/ma702637k
  • Sęk D, Lapkowski M, Dudek H, Karoń K, Janeczek H, Jarząbek B. Optical and electrochemical properties of three-dimensional conjugated triphenylamine-azomethine molecules. Synth. Met. 2012;162:1046–1051.10.1016/j.synthmet.2012.04.024
  • Park H, Oyama M. Remarkable 3-methyl substituent effects on the cyclization reaction of diphenylamine derivative cation radicals in acetonitrile. J. Chem. Soc., Perkin Trans. 2. 2002;7:1335–1339.10.1039/b201796b
  • Oyama M, Imabayashi T, Ho J-H, Ho T-I. Reaction analysis of 3-substituted-diphenylamine cation radicals in acetonitrile. Cyclization reaction vs. benzidine formation. Electrochemistry. 2006;74:649–655.
  • Wang YJ, Sheu HS, Lai CK. New star-shaped triarylamines: synthesis, mesomorphic behavior, and photophysical properties. Tetrahedron. 2007;63:1695–1705.10.1016/j.tet.2006.11.058
  • Creason SC, Wheeler J, Nelson RF. Electrochemical and spectroscopic studies of cation radicals. I. coupling rates of 4-substituted triphenylaminium ion. J. Org. Chem. 1972;37:4440–4446.10.1021/jo00799a034
  • Quinton C, Alain-Rizzo V, Dumas-Verdes C, Miomandre F, Clavier G, Audebert P. Redox-controlled fluorescence modulation (electrofluorochromism) in triphenylamine derivatives. RSC Adv. 2014;4:34332–34342.10.1039/C4RA02675F
  • Cremer J, Bäuerle P. Star-shaped perylene–oligothiophene–triphenylamine hybrid systems for photovoltaic applications. J. Mater. Chem. 2006;16:874–884.10.1039/B515657B
  • Pacansky J, Waltman RJ, Seki H. Ab initio computational studies on the structures and energetics of hole transport molecules: triphenylamine. Bull. Chem. Soc. Japan. 1997;70:55–59.10.1246/bcsj.70.55
  • Newkome GR, Paudler WW. Contemporary heterocyclic chemistry. New York (NY): Wiley; 1982.
  • Kumagai A, Fukumoto H, Yamamoto T. Chemical and electrochemical oxidation of thiophene−pyridine and thiophene−pyrimidine co-oligomers in solutions. J. Phys. Chem. B. 2007;111:8020–8026.10.1021/jp071614u
  • Jenkins IH, Salzner U, Pickup PG. Conducting copolymers of pyridine with thiophene, N-methylpyrrole, and selenophene. Chem. Mater. 1999;8:2444–2450.
  • Yamamoto T, Zhou ZH, Kanbara T, et al. π-conjugated donor−acceptor copolymers constituted of π-excessive and π-deficient arylene units. Optical and electrochemical properties in relation to CT structure of the polymer. J. Am. Chem. Soc. 1996;118:10389–10399.10.1021/ja961550t
  • Yamamoto T, Maruyama T, Zhou ZH, et al. pi.-conjugated poly(pyridine-2,5-diyl), poly(2,2'-bipyridine-5,5'-diyl), and their alkyl derivatives. Preparation, linear structure, function as a ligand to form their transition metal complexes, catalytic reactions, n-type electrically conducting properties, optical properties, and alignment on substrates. J. Am. Chem. Soc. 1994;116:4832–4845.10.1021/ja00090a031
  • Kim S-B, Harada K, Yamamoto T. Preparation of poly(diphenylamine-4,4′-diyl) and related random copolymers by organometallic polycondensation. Electrical, electrochemical, and optical properties. Macromolecules. 1998;31:988–993.10.1021/ma971244f
  • Guay J, Paynter R, Dao LH. Synthesis and characterization of poly(diarylamines): a new class of electrochromic conducting polymers. Macromolecules. 1990;23:3598–3605.10.1021/ma00217a010
  • Petr A, Kvarnström C, Dunsch L, Ivaska A. Electrochemical synthesis of electroactive polytriphenylamine. Synth. Met. 2000;108:245–247.10.1016/S0379-6779(99)00137-X
  • De Leeuw DW, Simenon MMJ, Brown AR, Einerhand REF. Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices. Synth. Met. 1997;87:53–59.10.1016/S0379-6779(97)80097-5
  • Pommerehne J, Vestweber H, Guss W, Mahrt RF, et al. Efficient two layer leds on a polymer blend basis. Adv. Mater. 1995;7:551–554.10.1002/(ISSN)1521-4095
  • Micaroni L, Nart FC, Hümmelgen IA. Considerations about the electrochemical estimation of the ionization potential of conducting polymers. J. Solid State Electrochem. 2002;7:55–59.
  • Saadeh H, Goodson T, Yu L. Synthesis of a polyphenylene-co-furan and polyphenylene-co-thiophene and comparison of their electroluminescent properties. Macromolecules. 1997;30:4608–4612.10.1021/ma970577+
  • Leriche P, Turbiez M, Monroche V, Frère P, Blanchard PJ, Skabara PJ. Strong π-electron donors based on a self-rigidified 2,2′-bi(3,4-ethylenedioxy)thiophene–tetrathiafulvalene hybrid π-conjugated system. Tetrahedron Lett. 2003;44:649–652.10.1016/S0040-4039(02)02702-8
  • Cravino A, Roquet S, Alévêque O, Leriche P, Frère P, Roncali J. Triphenylamine−oligothiophene conjugated systems as organic semiconductors for opto-electronics. Chem. Mater. 2006;18:2584–2590.10.1021/cm060257h

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.