1,200
Views
3
CrossRef citations to date
0
Altmetric
Articles

Synthesis of new photoactive urethane carbohydrates and their behavior in UV or femtosecond laser-induced two-photon polymerization

, , , , &
Pages 12-23 | Received 06 Apr 2015, Accepted 30 Jul 2015, Published online: 29 Sep 2015

References

  • Gandini A, Lacerda TM. From monomers to polymers from renewable resources: recent advances. Prog. Polym. Sci. 2015;48:1–39. doi:10.1016/j.progpolymsci.2014.11.002.
  • Lee W, Choi D, Lee Y, et al. Preparation of micropatterned hydrogel substrate via surface graft polymerization combined with photolithography for biosensor application. Sens. Actuators, B. 2008;129:841–849.10.1016/j.snb.2007.09.085
  • Tokarev I, Minko S. Multiresponsive, hierarchically structured membranes: new, challenging, biomimetic materials for biosensors, controlled release, biochemical gates, and nanoreactors. Adv. Mater. 2009;21:241–247.10.1002/adma.v21:2
  • Fertier L, Koleilat H, Stemmelen M, et al. The use of renewable feedstock in UV-curable materials – a new age for polymers and green chemistry. Prog. Polym. Sci. 2013;38:932–962.10.1016/j.progpolymsci.2012.12.002
  • Mahanta N, Leong WY, Valiyaveettil S. Isolation and characterization of cellulose-based nanofibers for nanoparticleextraction from an aqueous environment. J. Mater. Chem. 2012;22:1985–1993.10.1039/C1JM15018A
  • Autissier A, Visage C, Pouzet C, et al. Fabrication of porous polysaccharide-based scaffolds using a combined freeze-drying/cross-linking process. Acta Biomater. 2010;6:3640–3648.10.1016/j.actbio.2010.03.004
  • Yin D, Wu H, Liu C, et al. Fabrication of composition-graded collagen/chitosan-polylactide scaffolds with gradient architecture and properties. React. Funct. Polym. 2014;83:98–106.10.1016/j.reactfunctpolym.2014.07.017
  • Spain SG, Gibson MI, Cameron NR. Recent advances in the synthesis of well-defined glycopolymers. J. Polym. Sci., Part A: Polym. Chem. 2007;45:2059–2072.10.1002/(ISSN)1099-0518
  • Bordegé V, Muñoz-Bonilla A, León O, et al. Glycopolymers with glucosamine pendant groups: copolymerization, physico-chemical and interaction properties. React. Funct. Polym. 2011;71:1–10.10.1016/j.reactfunctpolym.2010.11.010
  • Killion JA, Kehoe S, Geever LM, et al. Hydrogel/bioactive glass composites for bone regeneration applications: synthesis and characterisation. Mater. Sci. Eng. C Mater. Biol. Appl. 2013;33:4203–4212.10.1016/j.msec.2013.06.013
  • Abeylath SC, Turos E. Glycosylated polyacrylate nanoparticles by emulsion polymerization. Carbohydr. Polym. 2007;70:32–37.10.1016/j.carbpol.2007.02.027
  • Xiao NY, Li AL, Liang H, et al. A well-defined novel aldehyde-functionalized glycopolymer: synthesis, micelle formation, and its protein immobilization. Macromolecules. 2008;41:2374–2380.10.1021/ma702510n
  • Bernard J, Hao X, Davis TP, et al. Synthesis of various glycopolymer architectures via RAFT polymerization: from block copolymers to stars. Biomacromolecules. 2006;7:232–238.10.1021/bm0506086
  • Pasparakis G, Alexander C. Sweet talking double hydrophilic block copolymer vesicles. Angew. Chem., Int. Ed. 2008;47:4847–4850.10.1002/(ISSN)1521-3773
  • Ghadban A, Albertin L. Synthesis of glycopolymer architectures by reversible-deactivation radical polymerization. Polymers. 2013;5:431–526.10.3390/polym5020431
  • Bird TP, Black WAP, Colquhoun JA, et al. Preparation and derivatives of poly-(6-O-methacryloyl-d-galactose) and poly-(6-O-acryloyl-d-galactose). J. Chem. Soc. C. 1966;1:1913–1918.10.1039/j39660001913
  • Black WAP, Colquhoun JA, Dewar ET. Polymerisable monomers of 1,2:3,4-di-O-isopropylidene-α-d-galactopyranose. Carbohydr. Res. 1967;5:362–365.10.1016/S0008-6215(00)80516-9
  • Carneiro MJ, Fernandes A, Figueiredo CM, et al. Synthesis of carbohydrate based polymers. Carbohydr. Polym. 2001;45:135–138.10.1016/S0144-8617(00)00322-2
  • Arslan H, Zırtıl O, Bütün V. The synthesis and solution behaviors of novel amphiphilic block copolymers based on d-galactopyranose and 2-(dimethylamino)ethyl methacrylate. Eur. Polym. J. 2013;49:4118–4129.10.1016/j.eurpolymj.2013.09.018
  • Chen YM, Wulff G. ABA and star amphiphilic block copolymers composed of polymethacrylate bearing a galactose fragment and poly(ɛ-caprolactone). Macromol. Rapid Commun. 2002;23:59–63.10.1002/(ISSN)1521-3927
  • Lowe AB, Wang R. Synthesis of controlled-structure AB diblock copolymers of 3-O-methacryloyl-1,2:3,4-di-O-isopropylidene-d-galactopyranose and 2-(dimethylamino)ethyl methacrylate. Polymer. 2007;48:2221–2230.10.1016/j.polymer.2007.02.062
  • Yagci Y, Jockusch S, Turro NJ. Photoinitiated polymerization: advances, challenges, and opportunities. Macromolecules. 2010;43:6245–6260.10.1021/ma1007545
  • Chatani S, Kloxin CJ, Bowman CN. The power of light in polymer science: photochemical processes to manipulate polymer formation, structure, and properties. Polym. Chem. 2014;5:2187–2201.10.1039/C3PY01334K
  • Pitarresi G, Casadei MA, Mandracchia D, et al. Photocrosslinking of dextran and polyaspartamide derivatives: a combination suitable for colon-specific drug delivery. J. Controlled Release. 2007;119:328–338.10.1016/j.jconrel.2007.03.005
  • Pescosolido L, Schuurman W, Malda J, et al. Hyaluronic acid and dextran-based semi-IPN hydrogels as biomaterials for bioprinting. Biomacromolecules. 2011;12:1831–1838.10.1021/bm200178w
  • Zhou Y, Yang D, Gao X, et al. Semi-interpenetrating polymer network hydrogels based on water-soluble N-carboxylethyl chitosan and photopolymerized poly (2-hydroxyethyl methacrylate). Carbohydr. Polym. 2009;75:293–298.10.1016/j.carbpol.2008.07.024
  • Yang Q, Strathmann M, Rumpf A, et al. Grafted glycopolymer-based receptor mimics on polymer support for selective adhesion of bacteria. ACS Appl. Mater. Interfaces. 2010;2:3555–3562.10.1021/am1007276
  • Pfaff A, Shinde VS, Lu Y, et al. Glycopolymer-grafted polystyrene nanospheres. Macromol. Biosci. 2011;11:199–210.10.1002/mabi.v11.2
  • Deng C, Li F, Hackett JM, et al. Collagen and glycopolymer based hydrogel for potential corneal application. Acta Biomater. 2010;6:187–194.10.1016/j.actbio.2009.07.027
  • Gu JS, Yu HY, Huang L, et al. Chain-length dependence of the antifouling characteristics of the glycopolymer-modified polypropylene membrane in an SMBR. J. Membr. Sci. 2009;326:145–152.10.1016/j.memsci.2008.09.043
  • Steffier LW. UV-curable nail coating formulations based on renewable polyols. United States patent US 8,574,558. 2013.
  • Wu S, Serbin J, Gu M. Two-photon polymerisation for three-dimensional micro-fabrication. J. Photochem. Photobiol., A. 2006;181:1–11.10.1016/j.jphotochem.2006.03.004
  • Obata K, El-Tamer A, Koch L, et al. High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP). Light: Sci. Appl. 2013;2: e116.
  • Waterman NA, Dickens P. Rapid product development in the USA, Europe and Japan. World Class Des. Manuf. 1994;1:27–36.10.1108/09642369210056629
  • Deubel M, Wegener M, Linden S, et al. 3D–2D–3D photonic crystal heterostructures fabricated by direct laser writing. Opt. Lett. 2006;31:805–807.10.1364/OL.31.000805
  • Amato L, Gu Y, Bellini N, et al. Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip. Lab Chip. 2012;12:1135–1142.10.1039/c2lc21116e
  • Ovsianikov A, Gruene M, Pflaum M, et al. Laser printing of cells into 3D scaffolds. Biofabrication. 2010;2:014104.10.1088/1758-5082/2/1/014104
  • Culver JC, Hoffmann JC, Poché RA, et al. Three-dimensional biomimetic patterning in hydrogels to guide cellular organization. Adv. Mater. 2012;24:2344–2348.10.1002/adma.201200395
  • Marino A, Filippeschi C, Genchi GG, et al. The osteoprint: a bioinspired two-photon polymerized 3-D structure for the enhancement of bone-like cell differentiation. Acta Biomater. 2014;10:4304–4313.10.1016/j.actbio.2014.05.032
  • Ma Z, Koo S, Finnegan MA, et al. Three-dimensional filamentous human diseased cardiac tissue model. Biomaterials. 2014;35:1367–1377.10.1016/j.biomaterials.2013.10.052
  • Marino A, Filippeschi C, Mattoli V, et al. Biomimicry at the nanoscale: current research and perspectives of two-photon polymerization. Nanoscale. 2015;7:2841–2850.10.1039/C4NR06500J
  • LaFratta CN, Fourkas JT, Baldacchini T, et al. Multiphoton fabrication. Angew. Chem. Int. Ed. 2007;46:6238–6258.10.1002/anie.v46:33
  • Klein F, Richter B, Striebel T, et al. Two-component polymer scaffolds for controlled three-dimensional cell culture. Adv. Mater. 2011;23:1341–1345.10.1002/adma.v23.11
  • Lee SH, Moon JJ, West JL. Three-dimensional micropatterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration. Biomaterials. 2008;29:2962–2968.10.1016/j.biomaterials.2008.04.004
  • Kufelt O, El-Tamer A, Sehring C, et al. Hyaluronic acid based materials for scaffolding via two-photon polymerization. Biomacromolecules. 2014;15:650–659.10.1021/bm401712q
  • Buruiana EC, Chibac AL, Buruiana T, et al. A benzophenone-bearing acid oligodimethacrylate and its application to the preparation of silver/gold nanoparticles/polymer nanocomposites. J. Nanopart. Res. 2013;15:1335.10.1007/s11051-012-1335-1
  • Kaczmarek H, Vukovic-Kwiatkowska I. Preparation and characterization of interpenetrating networks based on polyacrylates and poly(lactic acid). Express Polym. Lett. 2012;6:78–94.
  • Liao W, Teng H, Qu J, et al. Fabrication of chemically bonded polyacrylate/silica hybrid films with high silicon contents by the sol-gel method. Prog. Org. Coat. 2011;71:376–383.10.1016/j.porgcoat.2011.04.008
  • Schlie S, Ngezahayo A, Ovsianikov A, et al. Three-dimensional cell growth on structures fabricated from ORMOCER(R) by two-photon polymerization technique. J. Biomater. Appl. 2007;22:275–287.10.1177/0885328207077590
  • Ovsianikov A, Schlie S, Ngezahayo A, et al. Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials. J. Tissue Eng. Regener. Med. 2007;1:443–449.10.1002/(ISSN)1932-7005
  • Narayan RJ, Doraiswamy A, Chrisey DB, et al. Medical prototyping using two photon polymerization. Mater. Today. 2010;13:42–48.10.1016/S1369-7021(10)70223-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.