8,658
Views
70
CrossRef citations to date
0
Altmetric
Original Articles

Insight into hydrogels

, , &
Pages 456-478 | Received 06 Jan 2016, Accepted 19 Mar 2016, Published online: 06 Apr 2016

References

  • Bajpai SK, Saggu SS. Insulin release behavior of poly (methacrylamide-co-N-vinyl-2-pyrrolidone-co-itaconic acid) hydrogel: an interesting probe. Part II. J. Macromol. Sci. A: Pure. Appl. Chem. 2007; 44:153–157.
  • McNeill ME, Graham NB. Properties controlling the diffusion and release of water soluble solutes from poly (ethyl oxide) hydrogels 1. J. Biomater. Sci. Polym. 1993;4:305–322.10.1163/156856293X00582
  • Hoffman AS. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2002;54:3–12.10.1016/S0169-409X(01)00239-3
  • Peppas NA, Hilt JZ, Khadem hosseini A, et al. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 2006;18:1345–1360.10.1002/(ISSN)1521-4095
  • Wichterle O, Lim D. Hydrophilic gels in biologic use. Nature. 1960;185:117.10.1038/185117a0
  • Hoffman AS, Schmer G, Harris C, et al. Covalent binding of biomolecules to radiation-grafted hydrogels on inert polymer surfaces. Trans. Am. Soc. Artif. Intern. Organs. 1972;18:10–16.10.1097/00002480-197201000-00003
  • Ratner BD, Hoffman AS. Synthetic hydrogels for biomedical applications. In: Hydrogels for medical and related applications. ACS symposium series, Vol. 31. Washington, DC: American Chemical Society; 1976. p. 1–36.10.1021/symposium
  • Peppas NA, editor. Hydrogels in medicine and pharmacy, Vols. I–III. Boca Raton, FL: CRC Press; 1987.
  • Park K, Shalaby WSW, Park H, editors. Biodegradable hydrogels for drug delivery. Lancaster, PA: Technomic; 1993.
  • Harland RS, Prud’homme RK, editors. Polyelectrolyte gels: properties, preparation, and applications. Washington, DC: American Chemical Society; 1992.10.1021/symposium
  • Ulbrich K, Subr V, Podperová P, et al. Synthesis of novel hydrolytically degradable hydrogels for controlled drug release. J. Controlled Release. 1995;34:155–165.10.1016/0168-3659(95)00004-R
  • Hoffman AS. Intelligent polymers. In: K Park, editor. Controlled drug delivery. Washington, DC: American Chemical Society; 1997.
  • Harris JM, Zalipsky S, editors. Poly (ethylene glycol) chemistry and biological applications, ACS Symposium Series. Washington, DC: American Chemical Society; 1997.10.1021/symposium
  • Baroli B. Hydrogels for tissue engineering and delivery of tissue-inducing substances. J. Pharm. Sci. 2007;96:2197–2223.10.1002/jps.20873
  • Entezami AA, Massoumi B. Artificial muscles, biosensors and drug delivery systems based on conducting polymers: a review. Iran. Polym. J. 2006;15:13–30.
  • Ghazizadeh Y, Mirzadeh H, Amanpour S, et al. Investigation of effectiveness of chitosan hydrogel to stop bleeding and air leakage from lung fistula: an in vivo study. Iran. Polym. J. 2006;15:821–828.
  • Gao D, Xu H, Philbert MA, et al. Ultrafine hydrogel nanoparticles: synthetic approach and therapeutic application in living cells. Angew. Chem. Int. Ed. 2007;46:2224–2227.10.1002/(ISSN)1521-3773
  • Peppas NA, Buresa P, Leobandunga W, et al. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 2000;50:27–46.10.1016/S0939-6411(00)00090-4
  • Peppas NA, editor. Hydrogels in medicine and pharmacy, Vol. I, II, III. Boca Raton, FL: CRC Press; 1986.
  • Kamath K, Park K. Biodegradable hydrogels in drug delivery. Adv. Drug Deliv. Rev. 1993;11:59–84.10.1016/0169-409X(93)90027-2
  • Park K, Shalaby WSW, Park H, editors. Biodegradable hydrogels for drug delivery. Basle: Technomic; 1993.
  • Kim SW, Bae YH, Okano T. Hydrogels: swelling, drug loading and release. Pharm. Res. 1992;9:283–290.10.1023/A:1015887213431
  • Amin S, Rajabnezhad S, Kohli K. Hydrogels as potential drug delivery systems. Sci. Res. Essay. 2009;3:175–1183.
  • Sutton C. Adhesions and their prevention. Obstet. Gynaecol. 2005;7:168–176.10.1576/toag.2005.7.3.168
  • Aroca AS, Ribelles JL, Pradas MM, et al. Characterization of macroporous polymethyl methacrylate coated with plasma polymerized poly 2-hydroxyethyl acrylate. Eur. Polym. J. 2007;43:4552–4564.10.1016/j.eurpolymj.2007.07.026
  • Rowley J, Madlambayan G, Faulkner J, et al. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials. 1999;20:45–53.10.1016/S0142-9612(98)00107-0
  • Liu Q, Hedberg EL, Liu Z, et al. Preparation of macroporous poly 2-hydroxyethylmethacrylate hydrogels by enhanced phase separation. Biomaterials. 2000;21:2163–2169.10.1016/S0142-9612(00)00137-X
  • Satish CS, Satish KP, Shivakumar HG. Hydrogels as controlled drug delivery systems: synthesis, cross-linking, water and drug transport mechanism. Ind. J. Pharm. Sci. 2006;68:133–140.
  • Hennink WE, van Nostrum CF. Novel cross-linking methods to design hydrogels. Adv. Drug Deliv. Rev. 2002;54:13–36.10.1016/S0169-409X(01)00240-X
  • Zhang Y, Zhu W, Ding J. Preparation of thermosensitive microgels via suspension polymerization using different temperature protocols. J. Biomed. Mater. Res. Part A. 2005;75A:342–349.10.1002/(ISSN)1552-4965
  • Wang Zh, Hou X, Mao Zh, et al. Synthesis and characterization of biodegradable poly (lactic acid-co-glycine) via direct melt copolymerization. Iran. Polym. J. 2008;17:791–798.
  • Bagheri Sh, Mohammadi-Rovshandeh J, Hassan A. Synthesis and characterization of biodegradable random copolymers of L-lactide, glycolide and trimethylene carbonate. Iran. Polym. J. 2007;16:489–494.
  • Lopes MA, Felisberti MI. Mechanical behaviour and biocompatibility of poly(1-vinyl-2-pyrrolidinone)–gelatin IPN hydrogels. Biomaterials. 2003;24:1279–1284.10.1016/S0142-9612(02)00448-9
  • Oh EJ, Kang SW, Kim BS, et al. Control of the molecular degradation of hyaluronic acid hydrogels for tissue augmentation. J. Biomed. Mater. Res. Part A. 2008;86A:685–693.10.1002/jbm.a.v86a:3
  • Coviello T, Grassi M, Rambone G, et al. A crosslinked system from Scleroglucan derivative: preparation and characterization. Biomaterials. 2001;22:1899–1909.10.1016/S0142-9612(00)00374-4
  • Garcia Y, Collighan R, Griffin M, et al. Assessment of cell viability in a three-dimensional enzymatically cross-linked collagen scaffold. J. Mater. Sci. Mater. Med. 2007;18:1991–2001.10.1007/s10856-007-3091-9
  • Baroli B. Photopolymerization in drug delivery, tissue engineering and cell encapsulation: issues and potentialities. J. Chem. Tech. Biotech. 2006;81:491–499.10.1002/(ISSN)1097-4660
  • Kimura M, Fukumoto K, Watanabe J, et al. Hydrogen-bonding-driven spontaneous gelation of water-soluble phospholipid polymers in aqueous medium. J. Biomater. Sci. Polym. Ed. 2004;15:631–644.10.1163/156856204323046898
  • Oh KS, Han SK, Choi YW, et al. Hydrogen-bonded polymer gel and its application as a temperature-sensitive drug delivery system. Biomaterials. 2004;25:2393–2398.10.1016/j.biomaterials.2003.09.008
  • Stenekes RJ, Talsma H, Hennink WE. Formation of dextran hydrogels by crystallization. Biomaterials. 2001;22:1891–1898.10.1016/S0142-9612(00)00375-6
  • Cappello J, Crissman JW, Crissman M, et al. In-situ self-assembling protein polymer gel systems for administration, delivery, and release of drugs. J. Controlled Release. 1998;53:105–117.
  • Ganji F, Abdekhodaie MJ, Ramazany-Sadtabadi A. Gelation time and degradation rate of chitosan as a thermosensitive injectable hydrogel. J. Sol-Gel. Sci. Technol. 2007;42:47–53.10.1007/s10971-006-9007-1
  • Mohamadnia Z, Jamshidi A, Mobedi H, et al. Full natural hydrogel beads for controlled release of acetate and disodium phosphate derivatives of betamethasone. Iran. Polym. J. 2007;16:711–718.
  • Aalaie J, Vasheghani-Farahani E, Rahmatpour A, et al. Effect of montmorillonite on gelation and swelling behavior of sulfonated polyacrylamide nanocomposite hydrogels in electrolyte solutions. Eur. Polymer J. 2008;44:2024–2031.10.1016/j.eurpolymj.2008.04.031
  • Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 2012;64:49–60.10.1016/j.addr.2012.09.024
  • Baroli B. Hydrogels for tissue engineering and delivery of tissue-inducing substances. J. Pharm. Sci. 2007;96:2197–2223.10.1002/jps.20873
  • Entezami AA, Massoumi B. Artificial muscles, biosensors and drug delivery systems based on conducting polymers: a review. Iran. Polym. J. 2006;15:13–30.
  • Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev. 2006;58:1655–1670.10.1016/j.addr.2006.09.020
  • Casadei MA, Pitarresi G, Calabrese R, et al. Biodegradable and pH-sensitive hydrogels for potential colon-specific drug delivery: characterization and in vitro release studies. Biomacromolecules. 2008;9:43–49.10.1021/bm700716c
  • Chiu HC, Wu AT, Lin YF. Synthesis and characterization of acrylic acid-containing dextran hydrogels. Polymer. 2001;42:1471–1479.10.1016/S0032-3861(00)00523-1
  • Tavakoli J, Jabbari E, Etrati Khosroshahi M, et al. Swelling characterization of anionic acrylic acid hydrogel in an external electric field. Iran. Polym. J. 2006;15:891–900.
  • Lim F, Sun AM. Microencapsulated islets as bioartificial pancreas. Science. 1980;210:908–910.10.1126/science.6776628
  • Yannas, Lee E, Orgill DP. Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc. Natl. Acad. Sci. USA. 1989;86:933–937.
  • Gin H, Dupuy B, Baquey A, et al. Lack of responsiveness to glucose of microencapsulated Islets of Langerhans after three weeks implantation in the rat – influence of complement. J. Microencapsul. 1990;7:341–346.10.3109/02652049009021844
  • Matthew HW, Salley SO, Peterson WD, et al. Complex coacervate microcapsules for mammalian cell culture and artificial organ development. Biotechnol. Prog. 1993;9:510–519.10.1021/bp00023a010
  • Hsu FY, Tsai SW, Wang FF, et al. The collagen-containing alginate/poly (L-lysine)/alginate microcapsules. Artif. Cells Blood Substit. Immobil. Biotechnol. 2000;28(2):147–154.
  • Sefton MV, May MH, Lahooti S, et al. Making microencapsulation work: conformal coating immobilization gels and in vivo performance. J. Controlled Release. 2000;65:173–186.10.1016/S0168-3659(99)00234-5
  • Woerly S. Porous hydrogels for neural tissue engineering. Porous. Mater. Tiss. Eng. 1997;250:53–68.
  • Hubbell JA. Synthetic biodegradable polymers for tissue engineering and drug delivery. Curr. Opin. Solid State Mater. Sci. 1998;3:246–251.10.1016/S1359-0286(98)80098-3
  • Dillon JP, Yu XJ, Sridharan A, et al. The influence of physical structure and charge on neurite extension in a 3D hydrogel scaffold. J. Biomater. Sci. Polym. Ed. 1998;9:1049–1069.10.1163/156856298X00325
  • Cao YL, Rodriguez A, Vacanti M, et al. Comparative study of the use of PGA, calcium alginate and pluronics in the engineering of autologous porcine cartilage. J. Biomater. Sci. Polym. Ed. 1998;9:475–487.
  • Borkenhagen M, Clemence JF, Sigrist H, et al. Three-dimensional extracellular matrix engineering in the nervous system. J. Biomed. Mater. Res. 1998;40:392–400.10.1002/(ISSN)1097-4636
  • Kim BS, Nikolovski J, Bonadio J, et al. Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nat. Biotechnol. 1999;17:979–983.10.1038/13671
  • Elisseeff J, Anseth K, Sims D, et al. Transdermal photopolymerization for minimally invasive implantation. Proc. Nat. Acad. Sci. 1999;96:3104–3107.10.1073/pnas.96.6.3104
  • Suggs LJ, Mikos AG. Development of poly (propylene fumarate-co-ethylene glycol) as an injectable carrier for endothelial cells. Cell. Transplant. 1999;8:345–350.
  • Campoccia D, Doherty P, Radice M, et al. Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials. 1998;19:2101–2127.
  • Prestwich GD, Marecak DM, Marecak JF, et al. Controlled chemical modification of hyaluronic acid. J. Controlled Release. 1998;53:93–103.10.1016/S0168-3659(97)00242-3
  • Nakamae K, Miyata T, Jikihara A, et al. Formation of poly (glucosyloxyethyl methacrylate)–concanavalin A complex and its glucose sensitivity. J. Biomater. Sci. Polym. Ed. 1994;6:79–90.
  • Morris JE, Fischer R, Hoffman AS. Affinity precipitation of proteins with polyligands. Anal. Biochem. 1993;41:991–997.
  • Drumheller P, Hubbell JA. Densely crosslinked polymer networks of PEG in trimethylolpropane triacrylate for cell adhesion-resistant surfaces. J. Biomed. Mater. Res. 1995;29:201–215.
  • Fariba G, Ebrahim VF. Hydrogels in controlled drug delivery systems. Iran. Polym. J. 2009;18:63–88.
  • Lowman AM, Peppas NA. Hydrogels. In: E Mathiowitz, editor. Encyclopedia of controlled drug delivery. New York, NY: Wiley; 1999. p. 397–418.
  • Ratner BD, Hoffman AS. Synthetic hydrogels for biomedical applications. In: JD Andrade, editor. Hydrogels for medical and related applications, ACS symposium series, Vol. 31. Washington, DC: American Chemical Society; 1976. p. 1–36.10.1021/symposium
  • Peppas NA, Mikos AG. Preparation methods and structure of hydrogels. In: NA Peppas, editor. Hydrogels in medicine and pharmacy, Vol. I. Boca Raton, FL: CRC Press; 1986. p. 1–26.
  • Am Ende MT, Mikos AG. Diffusion-controlled delivery of proteins from hydrogels and other hydrophilic systems. In: LM Sanders, RW Hendren, editors. Protein delivery: physical systems. Tokyo: Plenum Press; 1997. p. 139–165.
  • Peppas NA, Barr-Howell BD. Characterization of the cross-linked structure of hydrogels. In: NA Peppas, editor. Hydrogels in medicine and pharmacy, Vol. I. Boca Raton, FL: CRC Press; 1986. p. 27–56.
  • Britton LN, Ashman RB, Aminahhavi TM, et al. Prediction of transport properties of permeants through polymer films: a simple gravimetric experiment. J. Chem. Educ. 1988;65:368.10.1021/ed065p368
  • Peppas NA, Huang Y, Torres-Lugo M, et al. Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu. Rev. Biomed. Eng. 2000;2:9–29.10.1146/annurev.bioeng.2.1.9
  • Canal T, Peppas NA. Correlation between mesh size and equilibrium degree of swelling of polymeric network. J. Biomed. Mater. Res. 1989;23:1183–1193.10.1002/(ISSN)1097-4636
  • Ichi T, Watanabe J, Ooya T, et al. Design of hydrogels crosslinked by biodegradable polyrotaxanes. Trans. Soc. Biomater. 2000; 33:1438.
  • Clapper DL, Burkstrand MJ, Chudzik SJ, et al. A photo-crosslinked collagen/BMP matrix promotes bone formation in vivo. Trans. Soc. Biomater. 2000; 25:115–492.
  • Thompson JP, Oegema TR, Jr, Bradford DS. Stimulation of mature canine intervertebral disc by growth factors. Spine (Phila Pa 1976). 1991; 16(3):253–260.
  • Dong LC, Hoffman AS, Yan Q. Macromolecular penetration through hydrogels. J. Biomater. Sci. Polym. Ed. 1994;5:473–484.10.1163/156856294X00158
  • Kuo CK, Ma PX. Diffusivity of three-dimensional ionically-crosslinked alginate hydrogels. Polym. Prep. 2000;41:1661.
  • Marler JJ, Guha A, Rowley J, et al. Soft tissue augmentation with injectable alginate and syngeneic fibroblasts. Plast. Reconstr. Surg. 2000;105:2049–2058.10.1097/00006534-200005000-00020
  • Ranjha NM, Khan S. Chitosan/poly (vinyl alcohol) based hydrogels for biomedical applications; A review. J. Pharm. Altern. Med. 2013;2:30–41.
  • Hoare TR, Kohane DS. Hydrogels in drug delivery: progress and challenges. Polymer. 2008;49:1993–2007.10.1016/j.polymer.2008.01.027
  • Berger J, Reist M, Mayer JM, et al. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur. J. Pharm. Biopharm. 2004;57:19–34.10.1016/S0939-6411(03)00161-9
  • Hennink WE, van Nostrum CF. Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev. 2002;54:13–36.10.1016/S0169-409X(01)00240-X
  • Kuijpers AJ, Engers GHM, Meyvis TKL, et al. Combined gelatin-chondroitin sulfate hydrogels for controlled release of cationic antibacterial proteins. Macromolecules. 2000; 33:3705–3713.
  • Eiselt P, Lee KY, Mooney DJ. Rigidity of two-component hydrogels prepared from alginate and poly (ethylene glycol)-diamines. Macromolecules. 1999;32:5561–5566.10.1021/ma990514m
  • de Nooy AEJ, Masci G, Crescenzi V. Versatile synthesis of polysaccharide hydrogels using the Passerini and Ugi multicomponent condensations. Macromolecules. 1999;32:1318–1320.10.1021/ma9815455
  • de Nooy AEJ, Capitani D, Masci G, et al. Ionic polysaccharide hydrogels via the Passerini and Ugi multicomponent condensations: synthesis, behavior and solid-state NMR characterization. Biomacromolecules. 2000;1:259–267.10.1021/bm005517h
  • Ichi T, Watanabe J, Ooya T, et al. Controllable erosion time and profile in poly(ethylene glycol) hydrogels by supramolecular structure of hydrolysable polyrotaxane. Biomacromolecules. 2001;2:204–210.10.1021/bm005617n
  • Tan H, Chu CR, Payne KA, et al. Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials. 2009;30:2499–2506.10.1016/j.biomaterials.2008.12.080
  • Lee KY, Alsberg E, Mooney DJ. Degradable and injectable poly (aldehyde guluronate) hydrogels for bone tissue engineering. J. Biomed. Mater. Res. 2001;56:228–233.10.1002/(ISSN)1097-4636
  • Elbert DL, Pratt AB, Lutolf MP, et al. Protein delivery from materials formed by self-selective conjugate addition reactions. J. Controlled Release. 2001;76:11–25.10.1016/S0168-3659(01)00398-4
  • Giammona G, Pitarresi G, Cavallaro G, et al. New biodegradable hydrogels based on an acryloylated polyaspartamide crosslinked by gamma irradiation. J. Biomater. Sci. Polym. Ed. 1999;10:969–987.10.1163/156856299X00568
  • Hiemstra C, van der Aa LJ, Zhong ZY, et al. Novel in situ forming, degradable dextran hydrogels by Michael addition chemistry: synthesis, rheology, and degradation. Macromolecules. 2007;40:1165–1173.10.1021/ma062468d
  • Giammona G, Pitarresi G, Cavallaro G, et al. New biodegradable hydrogels based on an acryloylated polyaspartamide cross-linked by gamma irradiation. J. Biomater. Sci. Polym. Ed. 1999;10:969–987.10.1163/156856299X00568
  • Martens P, Anseth KS. Characterization of hydrogels from acrylate modified poly (vinyl alcohol) macromers. Polymer. 2000;41:7715–7722.10.1016/S0032-3861(00)00123-3
  • Peppas NA, Mikos AG. Preparation methods and structure of hydrogels. In: NA Peppas, editor. Hydrogels in medicine and pharmacy, Vol. I. Boca Raton, FL: CRC Press; 1986. Chapter 1; p. 1–27.
  • Peppas NA, Merrill EW. Hydrogels as swollen elastic networks. J. Appl. Polym. Sci. 1977;21:1763–1770.10.1002/app.1977.070210704
  • Kofinas P, Athanasssiou V, Merrill EW. Hydrogels prepared by electron irradiation of poly (ethylene oxide) in water solution: unexpected dependence of density and protein diffusion coefficients on initial PEO molecular weight. Biomaterials. 1996;17:1547–1550.10.1016/0142-9612(96)89781-X
  • Merrill EW, Dennison KA, Sung C. Partitioning and diffusion of solutes in hydrogels of poly (ethylene oxide). Biomaterials. 1993;14:1117–1126.10.1016/0142-9612(93)90154-T
  • Stringer JL, Peppas NA. Diffusion of small molecular weight drugs in radiation-crosslinked poly (ethylene oxide) hydrogels. J. Controlled Release. 1996;42:195–202.10.1016/0168-3659(96)01457-5
  • Jabbari E, Nozari S. Swelling behavior of acrylic acid hydrogels prepared by γ-radiation crosslinking of polyacrylic acid in aqueous solution. Eur. Polymer J. 2000;36:2685–2692.10.1016/S0014-3057(00)00044-6
  • Moerkerke R, Meeussen F, Koningsveld R, et al. Phase transitions in swollen networks. 3. Swelling behavior of radiation crosslinked poly (vinyl methyl ether) in water. Macromolecules. 1998;31:2223–2229.
  • Arndt KF, Schmidt T, Reichelt R. Thermo-sensitive poly (vinyl methyl ether) micro-gel formed by high energy radiation. Polymer. 2001;42:6785–6791.10.1016/S0032-3861(01)00164-1
  • Sperinde JJ, Griffith LG. Synthesis and characterization of enzymatically-crosslinked-poly (ethylene glycol) hydrogels. Macromolecules. 1997;30:5255–5264.10.1021/ma970345a
  • Sperinde JJ, Griffith LG. Control and predication of gelation kinetics in enzymatically cross-linked poly-(ethylene glycol) hydrogels. Macromolecules. 2000;33:5467–5480.
  • Lim DW, Nettles DL, Setton LA, et al. Rapid cross-linking of elastin-like polypeptides with (hydroxymethyl)phosphines in aqueous solution. Biomacromolecules. 2007;8:1463–1470.10.1021/bm061059m
  • Wu J, Su ZG, Ma GH. A thermo- and pH-sensitive hydrogel composed of quaternized chitosan/glycerophosphate. Int. J. Pharm. 2006;315:1–11.10.1016/j.ijpharm.2006.01.045
  • Yokoyama F, Masada I, Shimamura K, et al. Morphology and structure of highly elastic poly (vinyl alcohol) hydrogel prepared by repeated freezing-and- melting. Colloid. Polym. Sci.. 1986;264:595–601.10.1007/BF01412597
  • Tsuji H. Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol. Biosci. 2005;5:569–597.10.1002/(ISSN)1616-5195
  • Ikada Y, Jamshidi K, Tsuji H, et al. Stereocomplex formation between enantiomeric poly (lactides). Macromolecules. 1987;20:904–906.10.1021/ma00170a034
  • Alexander C. Temperature-and pH-responsive smart polymers for gene delivery. Expert Opin. Drug Deliv. 2006;3:573–581.10.1517/17425247.3.5.573
  • Bignotti F, Penco M, Sartore L, et al. Synthesis, characterisation and solution behavior of thermo-and pH-responsive polymers bearing l-leucine residues in the side chains. Polymer. 2000; 41: 8247-8256.
  • Garbern JC, Hoffman AS, Stayton PS. Injectable pH-and temperature-responsive poly (N-isopropylacylamide-co-propylacrylic acid) copolymers for delivery of angiogenic growth factors. Biomacromolecules. 2010;11:1833–1839.10.1021/bm100318z
  • Jeong B, Gutowska A. Lessons from nature: stimuli-responsive polymers and their biomedical applications. Trends Biotechnol. 2002;20:305–311.10.1016/S0167-7799(02)01962-5
  • Tomme V, Storm SRG, Hennink WE. In situ gelling hydrogels for pharmaceutical and biomedical applications. Int. J. Pharm. 2008;355:1–18.10.1016/j.ijpharm.2008.01.057
  • Fogueri LR, Singh S. Smart polymers for controlled delivery of proteins and peptides: a review of patents. Recent. Pat. Drug Deliv. Formul. 2009; 3:40–48.
  • Ruel-Gariepy E, Leroux JC. In situ-forming hydrogels – review of temperature-sensitive systems. Eur. J. Pharm. Biopharm. 2004;58:409–426.10.1016/j.ejpb.2004.03.019
  • Liu F, Urban MW. Recent advances and challenges in designing stimuli-responsive polymers. Prog. Polym. Sci. 2010;35:3–23.10.1016/j.progpolymsci.2009.10.002
  • Gil ES, Hudson SM. Stimuli-responsive polymers and their bioconjugates. Prog. Polym. Sci. 2004;29:1173–1222.10.1016/j.progpolymsci.2004.08.003
  • Bajpai A, Shukla SK, Bhanu S, et al. Responsive polymers in controlled drug delivery. Prog. Polym. Sci. 2008;33:1088–1118.10.1016/j.progpolymsci.2008.07.005
  • Dai S, Ravi P, Tam KC. pH-Responsive polymers: synthesis, properties and applications. Soft Matter. 2008;4:435–449.10.1039/b714741d
  • Ravaine V, Ancla C, Catargi B. Chemically controlled closed-loop insulin delivery. J. Controlled Release. 2008;132:2–11.10.1016/j.jconrel.2008.08.009
  • Roy VD, Cambre JN, Sumerlin BS. Future perspectives and recent advances in stimuli-responsive materials. Prog. Polym. Sci. 2010;35:278–301.10.1016/j.progpolymsci.2009.10.008
  • Tanaka IN, Nishio I, Sun ST, et al. Collapse of gels in an electric field. Science. 1982;218:467–469.10.1126/science.218.4571.467
  • JP, Nitta T, Osada Y. Electro kinetic modeling of the contractile phenomena of polyelectrolyte gels. One-dimensional capillary model. J. Phys. Chem. 1994; 98: 9583–9587.
  • Sawahata K, Hara M, Yasunaga H, et al. Electrically controlled drug delivery system using polyelectrolyte gels. J. Controlled Release. 1990;14:253–262.10.1016/0168-3659(90)90165-P
  • Kwon IC, Bae YH, Okano T, et al. Drug release from electric current sensitive polymers. J. Controlled Release. 1991;17:149–156.10.1016/0168-3659(91)90054-H
  • Mamada A, Tanaka T, Kungwachakun D, et al. Photo induced phase transition of gels. Macromolecules. 1990;23:1517–1519.10.1021/ma00207a046
  • Suzuki A, Tanaka T. Phase transition in polymer gels induced by visible light. Nature. 1990;346:345–347.10.1038/346345a0
  • Lee KK, Cussler EL, Marchetti M, et al. Pressure-dependent phase transitions in hydrogels. Chem. Eng. Sci. 1990;45:766–767.10.1016/0009-2509(90)87019-O
  • Zhong X, Wang YX, Wang SC. Pressure dependence of the volume phase transition of temperature-sensitive gels. Chem. Eng. Sci. 1996;51:3235–3239.10.1016/0009-2509(95)00344-4
  • Miyata T, Asami N, Uragami T. A reversibly antigen-responsive hydrogel. Nature. 1999;399:766–769.
  • Suzuki Y, Tanihara M, Nishimura Y, et al. A new drug delivery system with controlled release of antibiotic only in the presence of infection. J. Biomed. Mater. Res. 1998;42:112–116.10.1002/(ISSN)1097-4636
  • Tanihara M, Suzuki Y, Nishimura Y, et al. Thrombin-sensitive peptide linkers for biological signal-responsive drug release systems. Peptides. 1998;19:421–425.10.1016/S0196-9781(97)00420-8
  • Tanihara M, Suzuki Y, Nishimura Y, et al. A novel microbial infection-responsive drug release system. J. Pharm. Sci. 1999;88:510–514.10.1021/js980418j
  • Mohamadnia Z, Zohuriaan-Mehr AJ, Kabiri K, et al. Bioactive compatible. Polymer. 2007;22:342–356.
  • Yin LC, Fei LK, Cui FY, et al. Superporous hydrogels containing poly(acrylic acid-co-acrylamide)/O-carboxymethyl chitosan interpenetrating polymer networks. Biomaterials. 2007;28:1258–1266.10.1016/j.biomaterials.2006.11.008
  • Zhang YX, Wu FP, Li MZ, et al. pH switching on-off semi-IPN hydrogel based on cross-linked poly(acrylamide-co-acrylic acid) and linear polyallyamine. Polymer. 2005;46:7695–7700.10.1016/j.polymer.2005.05.121
  • Ankareddi I, Brazel CS. Int. J. Pharm. 2007;336:241–247.10.1016/j.ijpharm.2006.11.065
  • Matsusaki M, Sakaguchi H, Serizawa T, et al. Controlled release of vascular endothelial growth factor from alginate hydrogels nano-coated with polyelectrolyte multilayer films. J. Biomater. Sci. Polym. Ed. 2007;18:775–783.10.1163/156856207781034160
  • De Geest BG, Dejugnat C, Sukhorukov GB, et al. Self-rupturing microcapsules. Adv. Mater. 2005;17:2357–2361.10.1002/(ISSN)1521-4095
  • Buenger D, Topuz F, Groll J. Hydrogels in sensing applications. Prog. Polym. Sci. 2012;37:1678–1719.10.1016/j.progpolymsci.2012.09.001
  • Nguyen KT, West JL. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials. 2002;23:4307–4314.10.1016/S0142-9612(02)00175-8
  • Biswal D, Hilt JZ. Microscale analysis of patterning reactions via FTIR imaging: application to intelligent hydrogel systems. Polymer. 2006;47:7355–7360.10.1016/j.polymer.2006.08.028
  • Dalton PD, Hostert C, Albrecht K, et al. Structure and properties of urea-crosslinked star poly (ethylene oxide)-ran-(propylene oxide) hydrogels. Macromol. Biosci. 2008;8:923–931.10.1002/mabi.v8:10
  • Kopecek J, Yang JY. Peptide-directed self-assembly of hydrogels. Acta. Biomater. 2009;5:805–816.
  • Vandermeulen GWM, Tziatzios C, Duncan R, et al. PEG-based hybrid block copolymers containing alpha-helical coiled coil peptide sequences: control of self-assembly and preliminary biological evaluation. Macromolecules. 2005;38:761–769.10.1021/ma0485538
  • Toledano S, Williams RJ, Jayawarna V, et al. Enzyme-triggered self-assembly of peptide hydrogels via reversed hydrolysis. J. Am. Chem. Soc. 2006;128:1070–1071.10.1021/ja056549l
  • Galler KM, Aulisa L, Regan KR, et al. Self-assembling multidomain peptide hydrogels: designed susceptibility to enzymatic cleavage allows enhanced cell migration and spreading. J. Am. Chem. Soc. 2010;132:3217–3223.10.1021/ja910481t
  • Lin CC, Metters AT, Anseth KS. Functional PEG-peptide hydrogels to modulate local inflammation induced by the pro-inflammatory cytokine TNF alpha. Biomaterials. 2009;30:4907–4914.10.1016/j.biomaterials.2009.05.083
  • Dankers PYW, Harmsen MC, Brouwer LA, et al. A modular and supramolecular approach to bioactive scaffolds for tissue engineering. Nat. Mater. 2005;4:568–574.10.1038/nmat1418
  • Um SH, Lee JB, Park N, et al. Enzyme-catalysed assembly of DNA hydrogel. Nat. Mater. 2006;5:797–801.10.1038/nmat1741
  • Horkay F, Basser PJ. Osmotic observations on chemically crosslinked DNA gels in physiological salt solutions. Biomacromolecules. 2004;5:232–237.10.1021/bm034372m
  • Yoshida R, Uchida K, Kaneko Y, et al. Comb-type grafted hydrogels with rapid de-swelling response to temperature changes. Nature. 1995;374:240–242.10.1038/374240a0
  • Irie M, Misumi Y, Tanaka T. Stimuli-responsive polymers – chemical induced reversible separation of an aqueous solution of poly (N-isopropylacrylamide) with pendent crown ether groups. Polymer. 1993;34:4531–4535.10.1016/0032-3861(93)90160-C
  • Lee KK, Cussler EL, Marchetti M, et al. Pressure-dependent phase-transitions in hydrogels. Chem. Eng. Sci. 1990;45:766–767.10.1016/0009-2509(90)87019-O
  • Bohon K, Krause S. An electrorheological fluid and siloxane gel based electromechanical actuator: working toward an artificial muscle. J. Polym. Sci. Part B: Polym. Phys. 1998; 36:1091–1094.
  • Horkay F, Tasaki I, Basser PJ. Osmotic swelling of polyacrylate hydrogels in physiological salt solutions. Biomacromolecules. 2000;1:84–90.10.1021/bm9905031
  • Gupta KM, Barnes SR, Tangaro RA, et al. Temperature and pH sensitive hydrogels: an approach towards smart semen-triggered vaginal microbicidal vehicles. J. Pharm. Sci. 2007;96:670–681.10.1002/jps.20752
  • Zhao B, Moore JS. Fast pH- and ionic strength-responsive hydrogels in microchannels. Langmuir. 2001;17:4758–4763.10.1021/la001709m
  • Ju XJ, Chu LY, Liu L, et al. A novel thermoresponsive hydrogel with ion-recognition property through supramolecular host-guest complexation. J. Phys. Chem. B. 2008;112:1112–1118.10.1021/jp709746w
  • Hassan CM, Doyle FJ, Peppas NA. Dynamic behavior of glucose responsive poly (methacrylic acid-g-ethylene glycol) hydrogels. Macromolecules. 1997;30:6166–6173.10.1021/ma970117g
  • Miyata T, Asami N, Uragami T. A reversibly antigen-responsive hydrogel. Nature. 1999;399:766–769.
  • Tessmar JK, Gopferich AM. Matrices and scaffolds for protein delivery in tissue engineering. Adv. Drug Deliv. Rev. 2007;59:274–291.10.1016/j.addr.2007.03.020
  • Holland TA, Tessmar JK, Tabata Y, et al. Transforming growth factor-beta 1 release from oligo poly (ethylene glycol) fumarate) hydrogels in conditions that model the cartilage wound healing environment. J. Controlled Release. 2004;94:101–114.10.1016/j.jconrel.2003.09.007
  • Kohane DS, Langer R. Polymeric biomaterials in tissue engineering. Pediatr. Res. 2008;63:487–491.10.1203/01.pdr.0000305937.26105.e7
  • Kim SW, Bae YH, Okano T. Hydrogels: swelling, drug loading, and release. Pharm. Res. 1992;9:283–290.10.1023/A:1015887213431
  • Lin CC, Metters AT. Hydrogels in controlled release formulations: network design and mathematical modeling. Adv. Drug Deliv. Rev. 2006;58:1379–1408.10.1016/j.addr.2006.09.004
  • Hoare TR, Kohane DS. Hydrogels in drug delivery: progress and challenges. Polymer. 2008;49:1993–2007.10.1016/j.polymer.2008.01.027
  • Petersen LK, Narasimhan B. Combinatorial design of biomaterials for drug delivery: opportunities and challenges. Expert Opin. Drug Deliv. 2008;5:837–846.10.1517/17425247.5.8.837
  • Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 2005;23:47–55.10.1038/nbt1055
  • Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem. Revs. 2001;101:1869–1879.
  • Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues – state of the art and future perspectives. J. Biomater. Sci. Polym. Ed. 2001;12:107–124.10.1163/156856201744489

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.