3,275
Views
28
CrossRef citations to date
0
Altmetric
Articles

Polar silicones: structure-dielectric properties relationship

, , &
Pages 496-507 | Received 21 Jan 2016, Accepted 12 Mar 2016, Published online: 11 Apr 2016

References

  • Kornbluh R, Pelrine R. High-performance acrylic and silicone elastomers. In: Carpi F, De Rossi D, Kornbluh R, Pelrine R, Sommer-Larsen P, editors. Dielectric elestomers as electromechanical transducers: fundamentals, materials, devices, models and applications of an emerging electroactive polymer technology. Pisa: Elsevier; 2008. p. 33–42.
  • Romasanta LJ, Lopez-Manchado MA, Verdejo R. Increasing the performance of dielectric elastomer actuators: a review from the materials perspective. Prog. Polym. Sci. 2015;51:188–211.10.1016/j.progpolymsci.2015.08.002
  • Biggs J, Danielmeier K, Hitzbleck J, et al. Electroactive polymers: developments of and perspectives for dielectric elastomers. Angew. Chem. Int. Ed. 2013;52:9409–9421.10.1002/anie.v52.36
  • Vertechy R, Fontana M, Stiubianu G, et al. Open-access dielectric elastomer material database, In: Bar-Cohen Y, editor. Proc. SPIE 9056, Electroactive Polymer Actuators and Devices (EAPAD), 2014 Mar 8, San Diego, CA. 90561R, doi:10.1117/12.2045053.
  • Xu D, Tairych A, Anderson IA. Stretch not flex: programmable rubber keyboard. Smart Mater. Struct. 2016;25: p. 7. 015012.
  • Kuo ACM. Poly(dimethylsiloxane): polymer data handbook. New York: Oxford University Press; 1999. p. 411–435.
  • Noll W. Chemistry and technology of silicones. New York (NY): Academic Press; 1968.
  • Madsen FB, Daugaard AE, Hvilsted S, et al. The current state of silicone-based dielectric elastomer transducers. Macromol. Rapid Commun. 2016;37(5):378–413. doi:10.1002/marc.201500576
  • (a) Tugui C, Cazacu M, Sacarescu L, et al. Full silicone interpenetrating bi-networks with different organic groups attached to the silicon atoms. Polymer. 2015;77:312–322; (b) Tugui C, Stiubianu G, Iacob M, et al. Bimodal silicone interpenetrating networks sequentially built as electroactive dielectric elastomers. J. Mater. Chem. C. 2015;3:8963–896910.1016/j.polymer.2015.09.042
  • Bele A, Cazacu M, Racles C, et al. Tuning the electromechanical properties of silicones by crosslinking agent. Adv. Eng. Mater. 2015;17:1302–1312.10.1002/adem.v17.9
  • Kussmaul B, Risse S, Wegener M, et al. Matrix stiffness dependent electro-mechanical response of dipole grafted silicones. Smart Mater. Struct. 2012;21: p.6. 064005.10.1088/0964-1726/21/6/064005
  • Madsen FB, Dimitrov I, Daugaard A, et al. Novel cross-linkers for PDMS networks for controlled and well distributed grafting of functionalities by click chemistry. Polym. Chem. 2013;4:1700–1707.10.1039/c2py20966g
  • Risse S, Kussmaul B, Krüger H, et al. DEA material enhancement with dipole grafted PDMS networks. In: Bar-Cohen Y, Carpi F, editors. Electroactive Polymer Actuators and Devices (EAPAD), Proc. of SPIE Vol. 7976; 2011 San Diego, CA. doi:10.1117/12.881919.
  • Carpi F, Gallone G, Galantini F, et al. Enhancing the dielectric permittivity of elastomers. In: Carpi F, De Rossi D, Kornbluh R, Pelrine R, Sommer-Larsen P, editors. Dielectric elastomers as electromechanical transducers: fundamentals, materials, devices, models and applications of an emerging electroactive polymer technology. Pisa: Elsevier; 2008, p. 51–68.
  • Wang Z, Nelson JK, Miao J, et al. Effect of high aspect ratio filler on dielectric properties of polymer composites: a study on barium titanate fibers and graphene platelets. IEEE Trans. Dielectr. Electr. Insul. 2012;19:960–967.10.1109/TDEI.2012.6215100
  • Yin Y, Chang X. Ocean engineering application of nanocomposites. In: Leng J, Lau AKT, editors. Multifunctional polymer nanocomposites. Boca Raton (FL): CRC Press / Taylor and Francis Group; 2011. p. 423–438.
  • Sebastian MT, Jantunen H. Polymer–ceramic composites of 0–3 connectivity for circuits in electronics: a review. Int. J. Appl. Ceram. Technol. 2010;7:415–434.
  • Huang C, Zhang QM. Fully functionalized high-dielectric-constant nanophase polymers with high electromechanical response. Adv. Mater. 2005;17:1153–1158.10.1002/(ISSN)1521-4095
  • Quinsaat JE, Alexandru M, Nueesch F, et al. Highly stretchable dielectric elastomer composites containing high volume fractions of silver nanoparticles. J. Mater. Chem. A. 2015;3:14675–14685.10.1039/C5TA03122B
  • Bele A, Stiubianu G, Varganici C, et al. Silicone dielectric elastomers based on radical crosslinked high molar mass polydimethylsiloxane co-filled with silica and barium titanate. J. Mater. Sci. 2015;50:6822–6832.10.1007/s10853-015-9239-y
  • Bele A, Cazacu M, Stiubianu G, et al. Silicone-barium titanate composites with increased electromechanical sensitivity. The effects of the filler morphology. RSC Adv. 2014;4:58522–58529.10.1039/C4RA09903F
  • Stiubianu G, Bele A, Cazacu M, et al. Dielectric silicone elastomers with mixed ceramic nanoparticles. Mater. Res. Bull. 2015;71:67–74.10.1016/j.materresbull.2015.07.005
  • Alexandru M, Cazacu M, Doroftei F, et al. On the morphology and potential application of polydimethylsiloxane-silica-titania composites. eXPRESS Polym. Lett. 2011;5:188–196.10.3144/expresspolymlett.2011.17
  • Racles C, Cazacu M, Fischer B, et al. Synthesis and characterization of silicones containing cyanopropyl groups and their use in dielectric elastomer actuators. Smart Mater. Struct. 2013;22:104004 ( 10pp).10.1088/0964-1726/22/10/104004
  • Yu L, Madsen FB, Hvilsted S, et al. Dielectric elastomers, with very high dielectric permittivity, based on silicone and ionic interpenetrating networks. RSC Adv. 2015;5:49739–49747.10.1039/C5RA07375H
  • Madsen FB, Yu L, Daugaard AE, et al. A new soft dielectric silicone elastomer matrix with high mechanical integrity and low losses. RSC Adv. 2015;5:10254–10259.10.1039/C4RA13511C
  • Kussmaul B, Risse S, Kofod G, et al. Enhancement of dielectric permittivity and electromechanical response in silicone elastomers: molecular grafting of organic dipoles to the macromolecular network. Adv. Funct. Mater. 2011;21:4589–4594.10.1002/adfm.v21.23
  • Dünki SJ, Tress M, Kremer F, et al. Fine-tuning of the dielectric properties of polysiloxanes by chemical modification. RSC Adv. 2015;5:50054–50062.10.1039/C5RA07412F
  • Racles C, Bele A, Dascalu M, et al. Polar-nonpolar interconnected elastic networks with increased permittivity and high breakdown fields for dielectric elastomer transducers. RSC Adv. 2015;5:58428–58438.10.1039/C5RA06865G
  • Yilgor I, McGrath JE. Polysiloxane containing copolymers: a survey of recent developments. Adv. Polym. Sci. 1988;86:1–87.10.1007/BFb0025273
  • Mark JE, Schaefer DW, Lin G. The Polysiloxanes. New York (NY): Oxford University Press; 2015.
  • Cazacu M, Racles C. Recent developments in siloxane-based polymers and copolymers. In: Dragan S, editor. New trends in nonionic (co)polymers and hybrids. Nova Science; 2006; 168–213.
  • Racles C, Hamaide T. Synthesis and characterization of water soluble saccharide functionalized polysiloxanes and their use as polymer surfactants for the stabilization of polycaprolactone nanoparticles. Macromol. Chem. Phys. 2005;206:1757–1768.10.1002/(ISSN)1521-3935
  • (a) Cazacu M, Marcu M, Holerca M, et al. Heterogeneous catalysed copolymerization of octamethylcyclotetrasiloxane with 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane. J. Macromol. Sci.-Pure and Appl. Chem. 1996;33: 65–76. (b) Cazacu M, Marcu M, Petrovan S, et al. Cationic heterogeneous copolymerization of octamethylcyclotetrasiloxane with 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane. Optimization of reaction conditions. Polym. Plast. Technol. Eng. J. 1996;35:327–347.10.1080/10601329608010854
  • Racles C, Alexandru M, Bele A, et al. Chemical modification of polysiloxanes with polar pendant groups by co-hydrosilylation. RSC Adv. 2014;4:37620–37628.10.1039/C4RA06955B
  • Racles C, Alexandru M, Musteata V, et al. Tailoring the dielectric properties of silicones by chemical modification. In: Pandalai SG, editor. Recent research developments in polymer science. Trivandrum: Transworld Research Network; 2014. 2, p.7–36. ISBN: 978-81-7895-611-4.
  • Racles C. Polysiloxanes with azo-aromatic mesogenic groups. Rev. Roum. Chim. 2009;4:589–595.
  • Smith AL, editor. Analysis of silicones. Vol. 41 in Chemical Analysis, A series of monographs on analytical chemistry and its applications. New York: Wiley; 1974.
  • Jonscher AK. Dielectric relaxation in solids. J. Phys. D: Appl. Phys. 1999;32:R57–R70.10.1088/0022-3727/32/14/201
  • Hyper Chem (TM) Professional 7.51, Hypercube, Inc., Florida, USA.
  • Grace LR. The effect of moisture contamination on the relative permittivity of polymeric composite radar-protecting structures at X-band. Compos. Struct. 2015;128:305–312.10.1016/j.compstruct.2015.03.070

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.