1,699
Views
33
CrossRef citations to date
0
Altmetric
Articles

Novel ‘schizophrenic’ diblock copolymer synthesized via RAFT polymerization: poly(2-succinyloxyethyl methacrylate)-b-poly[(N-4-vinylbenzyl),N,N-diethylamine]

, &
Pages 190-200 | Received 30 May 2016, Accepted 01 Sep 2016, Published online: 21 Oct 2016

References

  • Guragain S, Bastakoti B, Yusa S, et al. Stimuli-induced core-corona inversion of micelles of water soluble poly (sodium 2-(acrylamido)-2-methyl propanesulfonate-b-N-isopropylacrylamide). Polymer. 2010;51:3181–3186.10.1016/j.polymer.2010.05.004
  • Smith AE, Xu X, Kirkland-York SE, et al. “Schizophrenic” self-assembly of block copolymers synthesized via aqueous RAFT polymerization: from micelles to vesicles. Macromolecules. 2010;43:1210–1217.10.1021/ma902378k
  • Ge Z, Cai Y, Yin J, et al. Synthesis and ‘schizophrenic’ micellization of double hydrophilic AB4 miktoarm star and AB diblock copolymers: structure and kinetics of micellization. Langmuir. 2007;23:1114–1122.10.1021/la062719b
  • Zhang X, Ma J, Yang S, et al. “Schizophrenic” micellization of poly(acrylic acid)- B -poly(2-dimethylamino)ethyl methacrylate and responsive behavior of the micelles. Soft Mater. 2013;11:394–402.10.1080/1539445X.2012.668867
  • Butun V, Liu S, Weaver JVM, et al. A brief review of ‘schizophrenic’ block copolymers. React. Funct. Polym. 2006;66:157–165.10.1016/j.reactfunctpolym.2005.07.021
  • Taktak F, Bütün V. Novel zwitterionic ABA-type triblock copolymer for pH- and salt-controlled release of risperidone. Int. J. Polym. Mater. Polym. Biomater. 2016;65:151–161.10.1080/00914037.2015.1099100
  • Jiang X, Ge Z, Xu J, et al. Fabrication of multiresponsive shell cross-linked micelles possessing pH-controllable core swellability and thermo-tunable corona permeability. Biomacromolecules. 2007;8:3184–3192.10.1021/bm700743h
  • Zhang Q, Hong JD, Hoogenboom R. A triple thermoresponsive schizophrenic diblock copolymer. Polym. Chem. 2013;4:4322–4325.10.1039/c3py00659j
  • Hoogenboom R, Lambermont-Thijs HML, Jochems MJHC, et al. A schizophrenic gradient copolymer: switching and reversing poly(2-oxazoline) micelles based on UCST and subtle solvent changes. Soft. Mater. 2009;5:3590–3592.10.1039/b912491h
  • Vasantha VA, Jana S, Lee SSC, et al. Dual hydrophilic and salt responsive schizophrenic block copolymers–synthesis and study of self-assembly behavior. Polym. Chem. 2015;6:599–606.10.1039/C4PY01113A
  • Liu S, Billingham NC, Armes SP. A schizophrenic water-soluble diblock copolymer. Angew. Chem. Int. Ed. 2001;40:2328–2331.10.1002/1521-3773(20010618)40:12<2328::AID-ANIE2328>3.0.CO;2-M
  • Zhou YN, Zhang Q, Luo ZH. A light and pH dual-stimuli-responsive block copolymer synthesized by copper(0)-mediated living radical polymerization: solvatochromic, isomerization, and “schizophrenic” behaviors. Langmuir. 2014;30:1489–1499.10.1021/la402948s
  • Liu H, Hu J, Yang X, et al. Preparation and characterization of dual-responsive spiropyran-based random copolymer brushes via surface-initiated atom transfer radical polymerization. Des. Monomers Polym. 2016;19:193–204.10.1080/15685551.2015.1136536
  • Kumar S, Dory YL, Lepage M, et al. Surface-grafted stimuli-responsive block copolymer brushes for the thermo-, photo- and ph-sensitive release of dye molecules. Macromolecules. 2011;44:7385–7393.10.1021/ma2010102
  • Rahane SB, Floyd JA, Metters AT, et al. Swelling behavior of multiresponsive poly(methacrylic acid)-block-poly(N-isopropylacrylamide) brushes synthesized using surface-initiated photoiniferter-mediated photopolymerization. Adv. Funct. Mater. 2008;18:1232–1240.10.1002/adfm.200701411
  • Sun CY, Liu Y, Du JZ, et al. Facile generation of tumor-pH-labile linkage-bridged block copolymers for chemotherapeutic delivery. Angew. Chem. Int. Ed. 2016;55:1010–1014.10.1002/anie.201509507
  • Zhang Z, Chen X, Chen L, et al. Intracellular pH-sensitive PEG- block -acetalated-dextrans as efficient drug delivery platforms. ACS Appl. Mater. Interfaces. 2013;5:10760–10766.10.1021/am402840f
  • Fathi M, Entezami AA, Arami S, et al. Preparation of N -isopropylacrylamide/itaconic acid magnetic nanohydrogels by modified starch as a crosslinker for anticancer drug carriers. Int. J. Polym. Mater. Polym. Biomater. 2015;64:541–549.10.1080/00914037.2014.996703
  • Muller J, Marchandeau F, Prelot B, et al. Self-organization in water of well-defined amphiphilic poly(vinyl acetate)-b-poly(vinyl alcohol) diblock copolymers. Polym. Chem. 2015;6:3063–3073.10.1039/C5PY00091B
  • Kakkar D, Mazzaferro S, Thevenot J, et al. Amphiphilic PEO- b -PBLG diblock and PBLG- b -PEO- b -PBLG triblock copolymer based nanoparticles: doxorubicin loading and in vitro evaluation. Macromol. Biosci. 2015;15:124–137.10.1002/mabi.201400451
  • Huang Y, Liu X, Zhang F, et al. Living anionic polymerization of a block copolymer and the preparation of superhydrophobic surfaces based on the method of phase separation. Polym. J. 2013;45:125–128.10.1038/pj.2012.137
  • Minoda M, Shimizu T, Miki S, et al. Thermoresponsive NIPAM block copolymers containing densely grafted poly(vinyl ether) brushes synthesized by a combination of living cationic polymerization and RAFT polymerization. J. Polym. Sci., Part A: Polym. Chem. 2013;51:786–792.10.1002/pola.26421
  • Malik MI, Trathnigg B, Kappe CO. Selectivity of PEO-block-PPO diblock copolymers in the microwave-accelerated, anionic ring-opening polymerization of propylene oxide with PEG as initiator. Macromol. Chem. Phys. 2007;208:2510–2524.10.1002/(ISSN)1521-3935
  • Barthel MJ, Rudolph T, Crotty S, et al. Homo- and diblock copolymers of poly(furfuryl glycidyl ether) by living anionic polymerization: toward reversibly core-crosslinked micelles. J. Polym. Sci., Part A: Polym. Chem. 2012;50:4958–4965.10.1002/pola.v50.23
  • Davis KA, Matyjaszewski K, Höcker H. Statistical, gradient, block, and graft copolymers by controlled/living radical polymerizations. Adv. Polym. Sci. 2002;159:1–169.10.1007/3-540-45806-9
  • Qiao XG, Lansalot M, Bourgeat-Lami E, et al. Nitroxide-mediated polymerization-induced self-assembly of poly(poly(ethylene oxide) methyl ether methacrylate-co-styrene)-b-poly(n-butyl methacrylate-co-styrene) amphiphilic block copolymers. Macromolecules. 2013;46:4285–4295.10.1021/ma4003159
  • Okamura H, Takatori Y, Tsunooka M, et al. Synthesis of random and block copolymers of styrene and styrenesulfonic acid with low polydispersity using nitroxide-mediated living radical polymerization technique. Polymer. 2002;43:3155–3162.10.1016/S0032-3861(02)00162-3
  • Szabó Á, Szarka G, Iván B. Synthesis of poly(poly(ethylene glycol) methacrylate)-polyisobutylene ABA block copolymers by the combination of quasiliving carbocationic and atom transfer radical polymerizations. Macromol. Rapid Commun. 2015;36:238–248.10.1002/marc.201400469
  • Chantasirichot S, Inoue Y, Ishihara K. Photoinduced atom transfer radical polymerization in a polar solvent to synthesize a water-soluble poly(2-methacryloyloxyethyl phosphorylcholine) and its block-type copolymers. Polymer. 2015;61:55–60.10.1016/j.polymer.2015.01.070
  • Keddie DJ. A guide to the synthesis of block copolymers using reversible-addition fragmentation chain transfer (RAFT) polymerization. Chem. Soc. Rev. 2014;43:496–505.10.1039/C3CS60290G
  • Zhu Y, Gao X, Luo Y. Core-shell particles of poly(methyl methacrylate)-block-poly(n-butyl acrylate) synthesized via reversible addition-fragmentation chain-transfer emulsion polymerization and the polymer’s application in toughening polycarbonate. J. Appl. Polym. Sci. 2016;133:42833.
  • Jaymand M, Hatamzadeh M, Omidi Y. Modification of polythiophene by the incorporation of processable polymeric chains: recent progress in synthesis and applications. Prog. Polym. Sci. 2015;47:26–69.10.1016/j.progpolymsci.2014.11.004
  • Hatamzadeh M, Jaymand M. Synthesis of conductive polyaniline-modified polymers via a combination of nitroxide-mediated polymerization and “click chemistry”. RSC Adv. 2014;4:28653–28663.10.1039/c4ra00864b
  • Jaymand M. Modified syndiotactic polystyrene/montmorillonite nanocomposite: synthesis, characterization, and properties. Macromol. Res. 2011;19:998–1005.10.1007/s13233-011-1015-5
  • Hatamzadeh M, Jaymand M. Synthesis and characterization of polystyrene-graft-polythiophene via a combination of atom transfer radical polymerization and Grignard reaction. RSC Adv. 2014;4:16792–16802.10.1039/c4ra01228c
  • Abdollahi E, Abdouss M, Salami-Kalajahi M, et al. Synthesis and characterization of diethyl-dithiocarbamic acid 2-[4-(2-diethylthiocarbamoylsulfanyl-2-phenyl-acetyl)-2,5-dioxo-piperazin-1-yl]-2-oxo-1-phenyl-ethyl ester as new reversible addition-fragmentation chain transfer agent for polymerization of ethyl methacrylate. Des. Monomers Polym. 2016;19:56–66.10.1080/15685551.2015.1092013
  • Lokhande GP, Chambhare SU, Jagtap RN. Synthesis of N-(2 amino benzothiazole) methacylamide monomer and its copolymers for antimicrobial coating application by RAFT polymerization. Int. J. Polym. Mater. Polym. Biomater. 2016;65:391–401.10.1080/00914037.2015.1129951
  • Su Y, Dan M, Xiao X, et al. A new thermo-responsive block copolymer with tunable upper critical solution temperature and lower critical solution temperature in the alcohol/water mixture. J. Polym. Sci., Part A: Polym. Chem. 2013;51:4399–4412.10.1002/pola.26854
  • Chong YK, Le TPT, Moad G, et al. A more versatile route to block copolymers and other polymers of complex architecture by living radical polymerization: the RAFT process. Macromolecules. 1999;31:2071–2074.10.1021/ma981472p
  • Colfen H. Double-hydrophilic block copolymers: synthesis and application as novel surfactants and crystal growth modifiers. Macromol. Rapid Commun. 2001;22:219–252.10.1002/(ISSN)1521-3927
  • Jaymand M. Exfoliated syndiotactic polystyrene-graft-poly (methyl methacrylate)/montmorillonite nanocomposite prepared by solvent blending. Polym. J. 2011;43:901–908.10.1038/pj.2011.79
  • Sarvari R, Massoumi B, Jaymand M, et al. Novel three-dimensional, conducting, biocompatible, porous, and elastic polyaniline based scaffolds for regenerative therapies. RSC Adv. 2016;6:19437–19451.10.1039/C6RA00643D
  • Cao L, Gong C, Yang J. A solution-processable (tetraaniline-b-polyethylene glycol)3 star-shaped rod-coil block copolymer with enhanced electrochromic properties. Macromol. Rapid Commun. 2016;37:343–350.10.1002/marc.v37.4
  • Massoumi B, Ramezani M, Jaymand M, et al. Multi-walled carbon nanotubes-g-[poly(ethylene glycol)-b-poly(ε-caprolactone)]: synthesis, characterization, and properties. J. Polym. Res. 2015;22:214.10.1007/s10965-015-0863-7
  • Jianzhong D, O’Reilly RK. pH-responsive vesicles from a schizophrenic diblock copolymer. Macromol. Chem. Phys. 2010;211:1530–1537.
  • Bories-Azeau X, Armes SP, van den Haak HJW. Facile synthesis of zwitterionic diblock copolymers without protecting group chemistry. Macromolecules. 2004;37:2348–2352.10.1021/ma035904u
  • Li S, Huo F, Li Q, et al. Synthesis of a doubly thermo-responsive schizophrenic diblock copolymer based on poly[N-(4-vinylbenzyl)-N,N-diethylamine] and its temperature-sensitive flip-flop micellization. Polym. Chem. 2014;5:3910–3918.10.1039/c4py00077c
  • Dan M, Su Y, Xiao X, et al. A new family of thermo-responsive polymers based on poly[N-(4-vinylbenzyl)-N, N-dialkylamine]. Macromolecules. 2013;46:3137–3146.10.1021/ma4002116
  • Li S, Su Y, Dan M, et al. Thermo-responsive ABA triblock copolymer of PVEA-b-PNIPAM-b-PVEA showing solvent-tunable LCST in a methanol–water mixture. Polym. Chem. 2014;5:1219–1228.10.1039/C3PY01219K