2,521
Views
4
CrossRef citations to date
0
Altmetric
Articles

Synthesis and characterization of hyperbranched poly(ester-amine) by Michael addition polymerization

, , , &
Pages 458-467 | Received 18 Apr 2017, Accepted 01 Jul 2017, Published online: 13 Jul 2017

References

  • (a) Patil AR, Gaikar VG. Purification and recovery of curcuminoids from curcuma longa extract by reactive sorption using polymeric adsorbent carrying tertiary amine functional group. Ind Eng Chem Res. 2011;50:7452–7461. (b) Wilson JE. How surface-bound drugs inhibit thrombus formation. Drug Dev Res. 1990;21:79–92. (c) van de Wetering P, Cherng J-Y, Talsma H, et al. 2-(dimethylamino)ethyl methacrylate based (co)polymers as gene transfer agents. J Control Release. 1998;53:145–153. (d) Hollfelder F, Kirby AJ, Tawfik DS. Efficient catalysis of proton transfer by synzymes. J Am Chem Soc. 1997;119:9578–9579. (e) Wang Y, Li X, Hong CY, et al. Synthesis and micellization of thermoresponsive galactose-based diblock copolymers. J Polym Sci A Polym Chem. 2011;49:3280–3290.
  • (a) Ferruti P, Marchisio MA, Duncan R. Poly(amido-amine)s: biomedical applications. Macromol Rapid Commun. 2002;23:332–355. (b) Kong LZ, Pan CY. Synthesis and characterization of dendritic-linear-dendritic triblock copolymers based on poly(amidoamine) and polystyrene. Polymer. 2008;49:3450–3456. (c) Chen J, Guo J, Chang B, et al. Blue-emitting PEGylated hyperbranched PAMAM: transformation of cross-linked micelles to hollow spheres controlled by the PEG grafting density. Colloid Polym Sci. 2012;290:517–524.
  • (a) Zhong Z, Song Y, Engbersen JFJ, et al. A versatile family of degradable non-viral gene carriers based on hyperbranched poly(ester amine)s. J Control. Release. 2005;109:317–329. (b) Arote RB, Hwang S-K, Yoo M-K, et al. Biodegradable poly(ester amine) based on glycerol dimethacrylate and polyethylenimine as a gene carrier. J Gene Med. 2008;10:1223–1235.
  • (a) Rahbek UL, Nielsen AF, Dong M, et al. Bioresponsive hyperbranched polymers for siRNA and miRNA delivery. J Drug Target. 2010;18:812–820.10.3109/1061186X.2010.527982 (b) Yu Z, Yan J, You Y. Synthesis of bioreducible and acid labile poly(amido amine)s via Michael-addition reactions and their application in gene delivery. J Control Release. 2011;152:179–181. (c) Fleige E, Quadir MA, Haag R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Deliv Rev. 2012;64:866–884.
  • (a) Zhou Y, Yan D. Supramolecular self-assembly of amphiphilic hyperbranched polymers at all scales and dimensions: progress, characteristics and perspectives. Chem Commun. 2009;1172–1188. (b) Zhou Y, Huang W, Liu J, et al. Self-assembly of hyperbranched polymers and its biomedical applications. Adv Mater. 2010;22:4567–4590.
  • (a) Oskuee RK, Dehshahri A, Shier WT, et al. Alkylcarboxylate grafting to polyethylenimine: a simple approach to producing a DNA nanocarrier with low toxicity. J Gene Med. 2009;11:921–932. (b) Bae YM, Choi H, Lee S, et al. Dexamethasone-conjugated low molecular weight polyethylenimine as a nucleus-targeting lipopolymer gene carrier. Bioconjug Chem. 2007;18:2029–2036.
  • (a) Wang D, Imae T. Fluorescence emission from dendrimers and its pH dependence. J Am Chem Soc. 2004;126:13204–13205. (b) Wu DC, Liu Y, He CB, et al. Blue photoluminescence from hyperbranched poly(amino ester)s. Macromolecules. 2005;38:9906–9909. (c) Zhao Y, Chang Y, Liu S, et al. Photoluminescence study of tetra-dendron dendrimers derived from ethylenediamine cores and di-dendron dendrimers derived from mono-Boc-protected ethylenediamine cores. J Luminescence. 2010;130:576–581.
  • Yang W, Pan CY. Synthesis and fluorescent properties of biodegradable hyperbranched poly(amido amine)s. Macromol Rapid Commun. 2009;30:2096–2101.10.1002/marc.v30:24
  • Larson CL, Tucker SA. Intrinsic fluorescence of carboxylate-terminated polyamido amine dendrimers. Appl Spectrosc. 2001;55:679–683.10.1366/0003702011952596
  • Chu CC, Imae T. Fluorescence investigations of oxygen-doped simple amine compared with fluorescent PAMAM dendrimer. Macromol Rapid Commun. 2009;30:89–93.10.1002/marc.v30:2
  • Freeman CG, McEwan MJ, Claridge RFC, et al. Fluorescence of aliphatic amines. Chem Phys Lett. 1971;8:77–78.10.1016/0009-2614(71)80580-8
  • (a) Huang B, Tang S, Desai A, et al. Novel (P)under-baroly((ET)under-barhylene(A)under-barmido(A)under-barmine) (PETAA) dendrimers produced through a unique and highly efficient synthesis. Polymer. 2011;52:5975–5984. (b) Wang D, Zheng Z, Hong CY, et al. Michael addition polymerizations of difunctional amines (AA’) and triacrylamides (B-3). J Polym Sci A Polym Chem. 2006;44:6226–6242. (c) Wang D, Liu Y, Hong CY, et al. Preparation and characterization of novel hyperbranched poly(amido amine)s from Michael addition polymerizations of trifunctional amines with diacrylamides. J Polym Sci A Polym Chem. 2005;43:5127–5137.
  • (a) Gao C, Tang W, Yan D. Synthesis and characterization of water-soluble hyperbranched poly(ester amine)s from diacrylates and diamines. J Polym Sci A Polym Chem. 2002;40:2340–2349.10.1002/(ISSN)1099-0518 (b) Tang L, Fang Y, Tang X. Influence of alkyl chains of amphiphilic hyperbranched poly(ester amine)s on the phase-transfer performances for acid dye and the aggregation behaviors at the interface. J Polym Sci A Polym Chem. 2005;43:2921–2930.
  • Sun M, Hong CY, Pan CY. A unique aliphatic tertiary amine chromophore: fluorescence, polymer structure, and application in cell imaging. J Am Chem Soc. 2012;134:20581–20584.10.1021/ja310236m
  • Mather MD, Viswanathan K, Miller KM, et al. Michael addition reactions in macromolecular design for emerging technologies. Prog Polym Sci. 2006;31:487–531.10.1016/j.progpolymsci.2006.03.001
  • (a) Pritchard CD, O’Shea TM, Siegwart DJ, et al. An injectable thiol-acrylate poly(ethylene glycol) hydrogel for sustained release of methylprednisolone sodium succinate. Biomaterials. 2011;32:587–597. (b) Platte D, Helbig U, Houbertz R, et al. Localization of critical molar ratio intervals for highly branched step-growth Michael addition networks. Macromolecules. 2011;44:5123–5126.
  • (a) Gao C, Yan D. Hyperbranched polymers: from synthesis to applications. Prog Polym Sci. 2004;29:183–275.10.1016/j.progpolymsci.2003.12.002 (b) Zhu Z, Pan CY. A feasible synthetic route for linear PTHF-hyperbranched poly(phenyl sulfide) block copolymers. Macromol Chem Phys. 2007;208:1274–1282.
  • Odian G. Principles of polymerization. 4th ed. Hoboken (NJ): Wiley; 2004. p. 108–114.10.1002/047147875X
  • Harman LS, Mottley C, Mason RP. Free radical metabolites of L-cysteine oxidation. J Biol Chem. 1984;259:5606–5611.
  • Hawker CJ, Lee R, Fréchet JMJ. One-step synthesis of hyperbranched dendritic polyesters. J Am Chem Soc. 1991;113:4583–4588.10.1021/ja00012a030
  • Gruber A, Dräbenstedt A, Tietz C, et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science. 1997;276:2012–2014.10.1126/science.276.5321.2012
  • Simon PFW, Muller AHE, Pakula T. Characterization of highly branched poly(methyl methacrylate) by solution viscosity and viscoelastic spectroscopy. Macromolecules. 2001;34:1677–1684.10.1021/ma0014766
  • Williams ATR, Winfield SA, Miller JN. Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer. Analyst. 1983;108:1067–1071.10.1039/an9830801067