4,059
Views
12
CrossRef citations to date
0
Altmetric
Review Article

Macromolecules as targeted drugs delivery vehicles: an overview

, , , &
Pages 91-97 | Received 24 Sep 2018, Accepted 24 Feb 2019, Published online: 05 Apr 2019

References

  • Prasad D, Chauhan H. Key targeting approaches for pharmaceutical drug delivery. Am Pharm Rev. 2013;16(6).
  • Wang B, Hu L, Siahaan TJ. Drug delivery: principles and applications. Hoboken: John Wiley & Sons; 2016.
  • Yousaf A, Hamid SA, Bunnori NM, et al. Applications of calixarenes in cancer chemotherapy: facts and perspectives. Drug Des Devel Ther. 2015;9:2831.
  • Kumari P, Ghosh B, Biswas S. Nanocarriers for cancer-targeted drug delivery. J Drug Target. 2016;24(3):179–191.
  • Hoffman AS. The origins and evolution of “controlled” drug delivery systems. J Control Release. 2008;132(3):153–163.
  • Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991–1003.
  • Jain KK. Drug delivery systems-an overview. Drug delivery systems. Humana Press; 2008. p. 1–50.
  • Daraee H, Etemadi A, Kouhi M, et al. Application of liposomes in medicine and drug delivery. Artif Cells Nanomed Biotechnol. 2016;44(1):381–391.
  • Li T, Takeoka S. Smart liposomes for drug delivery. Smart nanoparticles for biomedicine. 2018:31–47.
  • Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36–48.
  • Tagami T, Ozeki T. Recent trends in clinical trials related to carrier-based drugs. J Pharm Sci. 2017:2219–2226.
  • Khodabandehloo H, Zahednasab H, Hafez AA. Nanocarriers usage for drug delivery in cancer therapy. Iran J Cancer Prev. 2016;9(2).
  • Rathbone M. Advances in delivery science and technology. Boston, MA: Springer; 2012.
  • Okamoto Y, Taguchi K, Yamasaki K, et al. Albumin-encapsulated liposomes: a novel drug delivery carrier with hydrophobic drugs encapsulated in the inner aqueous core. J Pharm Sci. 2018;107(1):436–445.
  • Lindner LH, Hossann M. Factors affecting drug release from liposomes. Curr Opin Drug Discov Devel. 2010;13(1):111–123.
  • Zhang X, Zong W, Bi H, et al. Hierarchical drug release of pH-sensitive liposomes encapsulating aqueous two phase system. Eur J Pharm Biopharm. 2018;127:177–182.
  • Kulthe SS, Choudhari YM, Inamdar NN, et al. Polymeric micelles: authoritative aspects for drug delivery. Des Monomers Polym. 2012;15(5):465–521.
  • Xu W, Ling P, Zhang T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv. 2013;2013.
  • Senapati S, Mahanta AK, Kumar S, et al. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 2018;3(1):7.
  • Luque-Michel E, Imbuluzqueta E, Sebastián V, et al. Clinical advances of nanocarrier-based cancer therapy and diagnostics. Expert Opin Drug Deliv. 2017;14(1):75–92.
  • Mochida Y, Cabral H, Kataoka K. Polymeric micelles for targeted tumor therapy of platinum anticancer drugs. Expert Opin Drug Deliv. 2017;14:1423–1438. (just-accepted).
  • Movassaghian S, Merkel OM, Torchilin VP. Applications of polymer micelles for imaging and drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7(5):691–707.
  • Varela-Moreira A, Shi Y, Fens MH, et al. Clinical application of polymeric micelles for the treatment of cancer. Mater Chem Front. 2017;1:1485–1501.
  • Caminade A-M, Turrin C-O. Dendrimers for drug delivery. J Mat Chem B. 2014;2(26):4055–4066.
  • Wolinsky JB, Grinstaff MW. Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv Drug Deliv Rev. 2008;60(9):1037–1055.
  • Tomalia DA, Cheng Y. Dendrimer-based drug delivery systems: from theory to practice. Hoboken: John Wiley & Sons; 2012.
  • Sharma AK, Gothwal A, Kesharwani P, et al. Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery. Drug Discov Today. 2017;22(2):314–326.
  • Wang H, Huang Q, Chang H, et al. Stimuli-responsive dendrimers in drug delivery. Biomater Sci. 2016;4(3):375–390.
  • Gutsche CD. Calixarenes: an introduction: royal society of chemistry. Tucson.2008.
  • Hamilton K. Synthesis, characterization, and application of water-soluble chiral calix [4] arene derivatives in spectroscopy and capillary electrokinetic chromatography. Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Kim Hamilton BS, Baton Rouge, Louisiana, Southern University; 2003.
  • Galindo-Murillo R, Sandoval-Salinas ME, Barroso-Flores J. In silico design of monomolecular drug carriers for the tyrosine kinase inhibitor drug imatinib based on calix-and thiacalix [n] arene host molecules: a DFT and molecular dynamics study. J Chem Theory Comput. 2014;10(2):825–834.
  • Iijima S. Carbon nanotubes: past, present, and future. Phys B Condens Matter. 2002;323(1):1–5.
  • Kar KK. Carbon nanotubes: synthesis, characterization and applications. India: Research Publishing Service; 2011.
  • Chandrasekhar P. CNT applications in drug and biomolecule delivery. Conducting polymers, fundamentals and applications. Cham: Springer; 2018. p. 61–64.
  • Zhang W, Zhang Z, Zhang Y. The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res Lett. 2011;6(1):555.
  • Karimi M, Solati N, Ghasemi A, et al. Carbon nanotubes part II: a remarkable carrier for drug and gene delivery. Expert Opin Drug Deliv. 2015;12(7):1089–1105.
  • Zhang J, Ma PX. Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv Drug Deliv Rev. 2013;65(9):1215–1233.
  • Loftsson T, Duchêne D. Cyclodextrins and their pharmaceutical applications. Int J Pharm. 2007;329(1):1–11.
  • Conceicao J, Adeoye O, Cabral-Marques HM, et al. Cyclodextrins as drug carriers in pharmaceutical technology: the state of the art. Curr Pharm Des. 2018;24(13):1405–1433.
  • Gidwani B, Vyas A. A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. Biomed Res Int. 2015;2015.
  • Duchêne D, Cavalli R, Gref R. Cyclodextrin-based polymeric nanoparticles as efficient carriers for anticancer drugs. Curr Pharm Biotechnol. 2016;17(3):248–255.
  • Rudek MA, Chau CH, Figg WD, et al. Handbook of anticancer pharmacokinetics and pharmacodynamics. New York: Springer; 2014.
  • Liechty WB, Peppas NA. Expert opinion: responsive polymer nanoparticles in cancer therapy. Eur J Pharm Biopharm. 2012;80(2):241–246.
  • Larson N, Ghandehari H. Polymeric conjugates for drug delivery. Chem Mater. 2012;24(5):840.
  • Knop K, Hoogenboom R, Fischer D, Schubert US, Knop K, Hoogenboom R, Fischer D, et al. Poly (ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem. 2010;49(36):6288–6308.
  • Kolate A, Baradia D, Patil S, et al. PEG—a versatile conjugating ligand for drugs and drug delivery systems. J Control Release. 2014;192:67–81.
  • D’souza AA, Shegokar R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv. 2016;13(9):1257–1275.
  • Jiwpanich S. Design and synthesis of a new class of self-cross-linked polymer nanogels. Amherst: University of Massachusetts Amherst. 2011.
  • Chourasia M, Jain S. Pharmaceutical approaches to colon targeted drug delivery systems. J Pharm Pharm Sci. 2003;6(1):33–66.
  • Tong X, Wang G, Soldera A, et al. How can azobenzene block copolymer vesicles be dissociated and reformed by light? J Phys Chem A. 2005;109(43):20281–20287.
  • Saint-Cricq P, Deshayes S, Zink J, et al. Magnetic field activated drug delivery using thermodegradable azo-functionalised PEG-coated core–shell mesoporous silica nanoparticles. Nanoscale. 2015;7(31):13168–13172.