1,549
Views
4
CrossRef citations to date
0
Altmetric
Full Length Article

Theoretical design of low bandgap donor–acceptor (D-A) monomers for polymer solar cells: DFT and TD-DFT study

&
Pages 125-137 | Received 10 Mar 2021, Accepted 21 Apr 2021, Published online: 05 May 2021

References

  • Rasmussen SC, Schwiderski RL, Mulholland ME. Thieno[3,4-b]pyrazines and their applications to low bandgap organic materials. Chem.Commun. 2011;47: 11394–11410
  • Rasmussen SC, Ogawa K, Rothstein SD. Synthetic approaches to bandgap control in conjugated polymeric materials. In: Nalwa HS, editor. Handbook of organic electronics and photonics. Vol. 1. Stevenson Ranch: American Scientific Publishers; 2008. p. 1–46.
  • Li Y, Guo Q, Li Z, et al. Solution processable D-A small molecules for bulk-heterojunction solar cells. Energy Environ Sci. 2010;3:1427–1436.
  • Zhao W, Li S, Yao H, et al. Molecular optimization enables over 13% efficiency in organic solar cells. J Am Chem Soc. 2017;139:7148–7152.
  • Zhou H, Yang L, You W. Rational design of high performance conjugated polymers for organic solar. Cells.Macromolecules 2012;45:607–632.
  • Van Mullekom HAM, Vekemans JAJM, Havinga EE, et al. Developments in the chemistry and bandgap engineering of donor-acceptor substituted conjugated polymers. Mater Sci Eng R. 2001;32:1–40.
  • Liu Z, Liu D, Zhang K, et al. Efficient fullerene-free solar cells with wide optical band gap polymers based on fluorinated benzotriazole and asymmetric benzodithiophene. J. Mater. Chem. A. 2017;5:21650–21657.
  • Scharber MC. On the Efficiency Limit of Conjugated Polymer: fullerene‐Based Bulk Heterojunction Solar Cells. Adv Mater. 2016;28:1994–2001.
  • Tan H, Furlan A, Li W, et al. Highly efficient hybrid polymer and amorphous silicon multijunction solar cells with effective optical management. Adv Mater. 2016;28:2170–2177.
  • Brédas JL, Norton JE, Cornil J, et al. Molecular understanding of organic solar cells: the challenges. A Chem Res. 2009;42:1691–1699.
  • Wang DH, Kim DY, Choi KW, et al. Enhancement of donor-acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of au nanoparticles. Angewandte Chemie. 2011;123(24):5633–5637.
  • Alam MM, Jenekhe SA. Efficient solar cells from layered nanostructures of donor and acceptor conjugated polymers. Chem Mater. 2004;16:4647–4656.
  • Kim K, Liu J, Namboothiry MA, et al. Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics. Appl Phys Lett. 2007;90:163511.
  • Yu G, Gao J, Hummelen JC, et al. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science. 1995;270:1789.
  • Benten H, Mori D, Ohkita H, et al. Recent research progress of polymer donor/polymer acceptor blend solar cells. J Mater Chem A. 2016;4:5340–5365.
  • Ogawa Y, White MS, Sun L, et al. Substrate‐ oriented nanorod scaffolds in polymer–fullerene bulk heterojunction solar cells. Chem Phys Chem. 2014;15:1070–1075.
  • Grazulevicius JV, Strohriegl P, Pielichowski J, et al. Carbazole-containing polymers: synthesis, properties and applications. Prog Polym Sci. 2003;28:1297–1353.
  • Morin JF, Leclerc M, Adès D, et al. Polycarbazoles: 25 years of progress macromol. Rapid Commun. 2005;26:761–778.
  • Blouin N, Leclerc M. Poly(2,7-carbazole)s: structure-property relationships. Acc Chem Res. 2008;41:1110–1119.
  • Li J, Grimsdale AC. Carbazole-based polymers for organic photovoltaic devices. Chem Soc Rev. 2010;39:2399–2410.
  • Beaupré S, Boudreault PLT, Leclerc M. Solar-energy production and energy-efficient lighting: photovoltaic devices and white-light-emitting diodes using poly(2,7-fluorene), poly(2,7-carbazole), and poly(2,7-dibenzosilole) derivatives. Adv Mater. 2010;22:E6–E27.
  • Boudreault PLT, Beaupré S, Leclerc M. Polycarbazoles for plastic electronics. Polym Chem. 2010;1:127–136.
  • Wong WY, Harvery RD. Recent progress on the photonic properties of conjugated organometallic polymers built upon the trans-bis(paraethynylbenzene)bis(phosphine)platinum(ii) chromophore and related derivatives. Macromol Rapid Commun. 2010;31:671–713.
  • Beaupré S, Leclerc M. PCDTBT: en route for low cost plastic solar cells. J Mater Chem A. 2013;1:11097–11105.
  • Tao XT, Zhang YD, Wada T, et al. Hyper branched polymers for electroluminescence applications. Adv Mater. 1998;10:226–230.
  • Michinobu T, Okoshi K, Osako H. Bandgap tuning of carbazole-containing donor–acceptor type conjugated polymers by acceptor moieties and p-spacer groups. Polymer. 2008;49:192–199.
  • Cai B, Xing Y, Yang Z, et al. High performance hybrid solar cells sensitized by organolead halide perovskites. J Energy Environ Sci. 2013;6:1480–1485.
  • Dumur F. Carbazole-based polymers as hosts for solution-processed organic light emitting diodes: simplicity, efficacy. Org Electron. 2015;25:345–361.
  • Burroughes JH, Bradley DDC, Brown AR, et al. Light-emitting diodes based on conjugated polymers. Nature. 1990;347:539–541.
  • Meerholz K, Volodin LB, Sandalphon S, et al. A photorefractive polymer with high optical gain and diffraction efficiency near 100%. Nature. 1994;371:497–500.
  • Wang G, Qian S, Xu J, et al. Enhanced photovoltaic response of PVK/C60 composite films. Phys Part B. 2000;279:116–119.
  • Pearson JM, Stolka M. Poly(N-vinylcarbazole). In: Polymer monographs. Vol. 61. New York: Gordon and Breach; 1981.
  • Sonntag M, Strohriegl P. Novel 2,7-linked carbazole trimers as model compounds for conjugated carbazole polymers. Chem Mater. 2004;16:4736–4742.
  • Morin JF, Leclerc M, Adès D, et al. Polycarbazoles: 25 years of progress. Macromol Rapid Commun. 2005;26:761–778.
  • Lima IT, Sousa L, Freitas R, et al. A DFT study of a set of natural dyes for organic electronics. J Mol Model. 2013;23(12):343–352.
  • Mohr T, Aroulmoji V, Ravindran RS, et al. DFT and TD-DFT study on geometries, electronic structures and electronic absorption of some metal free dye sensitizers for dye sensitized solar cells. Spectrochim Acta A Mol Biomol Spectrosc. 2015;135:1066–1073.
  • Li Y, Pullerits T, Zhao M, et al. Theoretical characterization of the PC60BM:PDDTT model for an organic solar cell. J Phys Chem C. 2011;115(44):21865–21873.
  • Xie XH, Shen W, He RX, et al. A density functional study of furofuran polymers as potential materials for polymer solar cells. Bull Korean Chem Soc. 2013;34(10):2995–3004.
  • Parr G, Yang W. Density-functional theory of atoms and molecules. Oxford, NY, USA: University Press; 1989.
  • Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98(7):5648–5652.
  • Lee C, Yang W, Parr RG. Development of the Colle- Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37(2):785–789.
  • Becke AD. Density‐functional thermochemistry. IV. A new dynamical correlation functional and implications for exact‐exchange mixing. J Chem Phys. 1996;104:1040–1046.
  • Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37:785–789.
  • Frisch MJ, Trucks GW, Schlegel HB. GAUSSIAN 09, Revision B.03. Pittsburgh PA: Gaussian, Inc.; 2009.
  • Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum solvation models. Chem Rev. 2005;105(8):2999–3094.
  • Cossi M, Barone V. Time-dependent density functional theory for molecules in liquid solutions. J Chem Phys. 2001;115(10):4708–4717.
  • Adamo C, Barone V. A TDDFT study of the electronic spectrum of s-tetrazine in the gas-phase and in aqueous solution. Chem Phys Lett. 2000;330(1):152–160.
  • Jo JW, Bae S, Liu F, et al. Comparison of two D− A type polymers with each being fluorinated on D and A unit for high performance solar cells. Adv Funct Mater. 2015;25:120–125.
  • Estrada LA, Liu DY, Salazar DH, et al. Poly[Bis-EDOT-Isoindigo]: an electroactive polymer applied to electrochemical supercapacitors. Macromolecules. 2012;45:8211–8220.
  • Kim BG, Zhen CG, Jeong EJ, et al. Organic dye design tools for efficient photocurrent generation in dye-sensitized solar cells: exciton binding energy and electron acceptors. Adv Funct Mater [Internet]. 2012;22:1606–1612.
  • Kroon R, Lenes M, Hummelen JC, et al. Small bandgap polymers for organic solar cells (polymer material development in the last 5 years). Polymer Rev. 2008;48(3):531–582.
  • Koster LJA, Mihailetchi VD, Ramaker R, et al. Light intensity dependence of open-circuit voltage of polymer: fullerenesolar cells. Appl Phys Lett. 2005;86(12):123509–123512.
  • Deibel C, Mack D, Gorenflot J, et al. Energetics of excited states in the conjugated polymer poly(3-hexylthiophene). Phys Rev B. 2010;81(8):8–15.
  • Banerji N, Gagnon E, Morgantini PY, et al. Breaking down the problem: optical transitions, electronic structure, and photoconductivity in conjugated polymer PCDTBT and in its separate building blocks. J Phys Chem C. 2012;116:11456–11469.
  • Burrows HD, Seixas De Melo J, Serpa C, et al. Triplet state dynamics on isolated conjugated polymer chins. Chem.Phys. 2002;3:285–290.
  • Shaheen SE, Brabec CJ, Sariciftci NS, et al. 2.5% efficient organic plastic solar cells. Appl Phys Lett. 2001;78(6):841–843.
  • Scharber MC, Mühlbacher D, Koppe M, et al. Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv Mater. 2006;18(6):789–794.
  • Mihailetchi VD, Blom PWM, Hummelen JC, et al. Cathode dependence of the open-circuit voltage of polymer: fullerene bulk heterojunction solar cells. J Appl Phys. 2003;94(10):6849–6854.
  • Bauschlicher CW, Lawson JW Jr. Current-voltage curves for molecular junctions: the effect of substituents. Phys Rev B. 2007;75:115406–115412.
  • Lo MF, Ng TW, Liu TZ, et al. Limits of open circuit voltage in organic photovoltaic devices. Appl Phys Lett. 2010;96(11):113303–113306.
  • Bredas JL, Beljonne D, Coropceanu V, et al. Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture. Chem Rev. 2004;104(11):4971–5004.
  • Scharber MC, Mühlbacher D, Koppe M, et al. Design rules for donors in bulk‐heterojunction solar cells—towards 10 % energy‐conversion efficiency. J Brabec Adv Mater. 2006;18:789–794.