255
Views
4
CrossRef citations to date
0
Altmetric
Articles

Producing electricity at estuaries from salinity gradient: exergy analysis

, , , , , & show all
Pages 301-309 | Received 11 Feb 2020, Accepted 31 Aug 2020, Published online: 04 Nov 2020

References

  • Alvarez-Silva, O., Osorio, A. F., Ortega, S., & Agudelo, P. (2011, June 6–9). Estimation of the electric power potential using pressure retardedosmosis in the Leon river’s mouth: A first step for the harnessing of saline gradients in Colombia Ocean. Proceedings of the OCEANS2011 IEEE, Santander, Spain.
  • Banat, F., & Jwaied, N. (2008). Exergy analysis of desalination by solar-powered membrane distillation units. Desalination, 230(1-3), 27–40. https://doi.org/10.1016/j.desal.2007.11.013
  • Bejan, A. (2006). Advanced engineering thermodynamics. John Wiley & Sons.
  • Besha, A. T., Tsehaye, M. T., Aili, D., Zhang, W., & Tufa, R. A. (2020). Design of monovalent ion selective membranes for reducing the impacts of multivalent ions in reverse electrodialysis. Membranes, 10(1), 7. https://doi.org/10.3390/membranes10010007
  • Brogioli, D. (2009). Extracting renewable energy from a salinity difference using a capacitor. Physical Review Letters, 103(5), 058501. https://doi.org/10.1103/PhysRevLett.103.058501
  • Cengel, Y. A., Cerci, Y., & Wood, B. (1999, November 14–19). Second law analysis of separation processes of mixtures. ASME International Mechanical Engineering Congress and Exposition, Nashville, Tennessee.
  • Cerci, Y. (1999). Improving the thermodynamic and economic efficiencies of desalination plants [Doctoral dissertation]. Mechanical Engineering, University of Nevada. https://www.usbr.gov/research/dwpr/reportpdfs/report078.pdf
  • Clarke, E. C. W., & Glew, D. N. (1985). Evaluation of the thermodynamic functions for aqueous sodium chloride from equilibrium and calorimetric measurements below 154°C. Journal of Physical and Chemical Reference Data, 14(2), 489–610. https://doi.org/10.1063/1.555730
  • Combe, M. (1966). Etude des marées dans l’oued Sebou et des pollutions qu’elles provoquent à l’étiage (Study of tidal cycle in the Sebou estuaryduringlow water) (108 p). Rapport inédit, Rabat, MTPC/DH DRE.
  • Culkin, F., & Ridout, P. S. (1998). Stability of IAPSO standard seawater. Journal of Atmospheric and Oceanic Technology, 15(4), 1072–1075. https://doi.org/10.1175/1520-0426(1998)015<1072:SOISS>2.0.CO;2
  • El-Blidi, S., & Fekhaoui, M. (2003). Hydrology and tidal dynamicin the Sebou estuary (Gharb, Morocco). Bulletin de l'Institut Scientifique, Rabat, section Sciences de la Vie, 25, 57–65.
  • Emdadi, A., Gikas, P., Farazaki, M., & Emami, Y. (2016a). Salinity gradient energy potential at the hypersaline Urmia Lake–ZarrinehRud River system in Iran. Renewable Energy, 86, 154–162. https://doi.org/10.1016/j.renene.2015.08.015
  • Emdadi, A., Zenouzi, M., & Kowalski, G. J. (2016b, November). Determining the potential of salinity gradient energy source using an exergy analysis. ASME 2016 10th International Conference on Energy Sustainability collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology, American Society of Mechanical Engineers Digital Collection.
  • Emdadi, A., Zenouzi, M., Lak, A., Panahirad, B., Emami, Y., Lak, F., & Kowalski, G. J. (2018). Exergy analysis-potential of salinity gradient energy source. Journal of Energy Resources Technology, 140(7), 7. https://doi.org/10.1115/1.4038964
  • Finley, W., & Pscheidt, E. (2001). Hydrocratic generator (U.S. Patent No. 6,313,545).
  • Gao, X., & Kroeze, C. (2012). The effects of blue energy on future emissions of greenhouse gases and other atmospheric pollutants in China. Journal of Integrative Environmental Sciences, 9(sup1), 177–190. https://doi.org/10.1080/1943815X.2012.701648
  • Haddout, S., Igouzal, M., & Maslouhi, A. (2016a). Analytical and numerical study of the salinity intrusion in the Sebou River estuary (Morocco)–effect of the “super blood moon” (total lunar eclipse) of 2015. Hydrology and Earth System Sciences, 20(9), 3923–3945. https://doi.org/10.5194/hess-20-3923-2016
  • Haddout, S., Igouzal, M., & Maslouhi, A. (2017b). Seawater intrusion in semi-closed convergent estuaries (case study of Moroccan Atlantic estuaries): application of salinity analytical models. Marine Geodesy, 40(5), 275–296. https://doi.org/10.1080/01490419.2017.1319446
  • Haddout, S., & Maslouhi, A. (2018). One-Dimensional hydraulic analysis of the effect of sea level rise on salinity intrusion in the Sebou estuary, Morocco. Marine Geodesy, 41(3), 270–288. https://doi.org/10.1080/01490419.2017.1420713
  • Haddout, S., Maslouhi, A., Baimik, I., Igouzal, M., & Marah, H. (2019). Two-dimensional modeling of the vertical circulation of salt intrusion in the Sebou estuary under different hydrological conditions. ISH Journal of Hydraulic Engineering, 25(2), 170–187. https://doi.org/10.1080/09715010.2017.1391134
  • Haddout, S., Maslouhi, A., & Igouzal, M. (2017a). Predicting of salt water intrusion in the Sebou River estuary (Morocco). Journal of Applied Water Engineering and Research, 5(1), 40–50. https://doi.org/10.1080/23249676.2015.1124029
  • Haddout, S., Maslouhi, A., Magrane, B., & Igouzal, M. (2016b). Study of salinity variation in the Sebou River Estuary (Morocco). Desalination and Water Treatment, 57(36), 17075–17086. https://doi.org/10.1080/19443994.2015.1091993
  • Haddout, S., & Priya, K. L. (in press). Impacts of flushing time and intrusion length on electricity production from salinity gradient energy (SGE) in the estuaries. International Journal of River Basin Management, 1–3. https://doi.org/10.1080/15715124.2020.1750422
  • Helfer, F., Lemckert, C., & Anissimov, Y. G. (2014). Osmotic power with pressure retarded osmosis: Theory, performance and trends – a review. Journal of Membrane Science, 453, 337–358. https://doi.org/10.1016/j.memsci.2013.10.053
  • IAPWS. (1996, September). Release on the IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. The International Association for the Properties of Water and Steam, Fredericia, Denmark. http://www.iapws.org/relguide/IAPWS95.pdf
  • International Association for the Properties of Water and Steam. (2008). Release on the IAPWS formulation for the thermodynamic properties of seawater.
  • International Energy Agency. (2013). Key world energy statistics. IEA. Retrieved January 5, 2020, from http://www.iea.org/publications/freepublications/publication/KeyWorld2013.pdf.
  • Isaacs, J. D., & Seymour, R. J. (1973). The ocean as a power resource. International Journal of Environmental Studies, 4(1-4), 201–205. https://doi.org/10.1080/00207237308709563
  • Jay, D. A. (2010). Estuarine variability. In A. Valle-Levinson (Ed.), Contemporary issues in Estuarine physics (pp. 62–99). Cambridge University Press.
  • Kahraman, N., Cengel, Y. A., Wood, B., & Cerci, Y. (2005). Exergy analysis of a combined RO, NF, and EDR desalination plant. Desalination, 171(3), 217–232. https://doi.org/10.1016/j.desal.2004.05.006
  • Kim, D., Kwon, K., Kim, D. H., & Li, L. (2019). Energy generation using reverse electrodialysis: Principles, implementation, and applications. Springer.
  • Kim, D.-K., Duan, C., Chen, Y.-F., & Majumdar, A. (2010). Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels. Microfluidics and Nanofluidics, 9(6), 1215–1224. https://doi.org/10.1007/s10404-010-0641-0
  • Kuleszo, J., Kroeze, C., Post, J., & Fekete, B. M. (2010). The potential of blue energy for reducing emissions of CO2 and non-CO2 greenhouse gases. Journal of Integrative Environmental Sciences, 7(sup1), 89–96. https://doi.org/10.1080/19438151003680850
  • Lacey, R. E. (1980). Energy by reverse electrodialysis. Ocean Engineering, 7(1), 1–47. https://doi.org/10.1016/0029-8018(80)90030-X
  • Lagger, G., Jensen, H., Josserand, J., & Girault, H. H. (2003). Hydro-voltaic cells. Part 1. Concentration cells. Journal of Electroanalytical Chemistry, 545, 1–6. https://doi.org/10.1016/S0022-0728(03)00116-5
  • La Mantia, F., Pasta, M., Deshazer, H. D., Logan, B. E., & Cui, Y. (2011). Batteries for efficient energy extraction from a water salinity difference. Nano Letters, 11(4), 1810–1813. https://doi.org/10.1021/nl200500s
  • Lewis, A., Estefen, S., Huckerby, J., Musial, W., Pontes, T., & Torres-Martinez, J. (2011). Ocean energy. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, & C. von Stechow (Eds.), IPCC Special report on renewable energy sources and climate change mitigation (pp. 497–534). Cambridge University Press.
  • Loeb, S. (1975). Osmotic power plants. Science, 189(4203), 654–655. https://doi.org/10.1126/science.189.4203.654
  • Mergaoui, L., Fekhaoui, M., Bouya, D., Gheït, A., & Stambouli, A. (2003). Qualité des eaux et macrofaune benthique d’un milieu estuarien du Maroc: cas de l’estuaire de Sebou. Bulletin de l’institut Scientifique, 25, 67–75.
  • Moran, M. J. (1989). Availability analysis: A guide to efficient energy use. ASME Press.
  • Nafeya, A. S., Fath, H. E., & Mabrouka, A. A. (2008). Thermoeconomic design of a multi-effect evaporation mechanical vapor compression (MEE–MVC) desalination process. Desalination, 230(1-3), 1–15. https://doi.org/10.1016/j.desal.2007.08.021
  • Olsson, M., Wick, G. L., & Isaacs, J. D. (1979). Salinity gradient power-utilizing vapor-pressure differences. Science, 206(4417), 452–454. https://doi.org/10.1126/science.206.4417.452
  • Ortega, S., Stenzel, P., Alvarez-Silva, O., & Osorio, A. F. (2014). Site-specific potential analysis for pressure retarded osmosis (PRO) power plants – the León river example. Renewable Energy, 68, 466–474. https://doi.org/10.1016/j.renene.2014.02.033
  • Pattle, R. E. (1954). Production of electric power by mixing fresh and salt water in the hydroelectric pile. Nature, 174(4431), 660–660. https://doi.org/10.1038/174660a0
  • Pattle, R. E. (1955). Electricity from fresh and salt waterwithout fuel. Chemical Processing and Engineering, 35, 351–354.
  • Pitzer, K. S., Peiper, J. C., & Busey, R. H. (1984). Thermodynamic properties of aqueous sodium chloride solutions. Journal of Physical and Chemical Reference Data, 13(1), 1–102. https://doi.org/10.1063/1.555709
  • Post, J. W., Veerman, J., Hamelers, H. V., Euverink, G. J., Metz, S. J., Nymeijer, K., & Buisman, C. J. (2007). Salinity-gradient power: Evaluation of pressure-retarded osmosis and reverse electrodialysis. Journal of Membrane Science, 288(1-2), 218–230. https://doi.org/10.1016/j.memsci.2006.11.018
  • Sharqawy, M. H., Lienhard, J. H., & Zubair, S. M. (2010b, January). Formulation of seawater flow exergy using accurate thermodynamic data. In ASME 2010 International Mechanical Engineering Congress and Exposition (pp. 675–682). American Society of Mechanical Engineers Digital Collection.
  • Sharqawy, M. H., Lienhard V, J. H., & Zubair, S. M. (2010a). Thermophysical properties of seawater: A review of existing correlations and data. Desalination and Water Treatment, 16(1-3), 354–380. (available on: http://web.mit.edu/seawater). https://doi.org/10.5004/dwt.2010.1079
  • Stenzel, P., & Wagner, H. J. (October 6-8, 2010). Osmotic power plants: Potential analysis and site Criteria. Proceedings of the 3rd International Conference on Ocean energy, Bilbao, Spain.
  • Sussman, M. V., & Katchalsky, A. (1970). Mechanochemical turbine: A new power cycle. Science, 167(3914), 45–47. https://doi.org/10.1126/science.167.3914.45
  • Touati, K., & Tadeo, F. (2017). Green energy generation by pressure retarded osmosis: State of the art and technical advancement—review. International Journal of Green Energy, 14(4), 337–360. https://doi.org/10.1080/15435075.2016.1255633
  • Valle-Levinson, A. (2010). Definition and classification of estuaries. In A. Valle-Levinson (Ed.), Contemporary issues in Estuarine physics (pp. 1–11). Cambridge University Press.
  • Yip, N. Y., & Elimelech, M. (2012). Thermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis. Environmental Science and Technology, 46(9), 5230–5239. https://doi.org/10.1021/es300060m

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.