556
Views
9
CrossRef citations to date
0
Altmetric
Articles

Impact of BMPs on water quality: a case study in Big Sunflower River watershed, Mississippi

ORCID Icon, &
Pages 375-388 | Received 27 Jul 2020, Accepted 15 Dec 2020, Published online: 14 Feb 2021

References

  • Abbaspour, K. C. (2007). ‘User manual for SWAT-CUP, SWAT calibration and uncertainty analysis programs’, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Duebendorf, Switzerland.
  • Abdelwahab, O. M. M., Ricci, G. F., Girolamo, A. M., & Gentile, F. (2018). Modelling soil erosion in a Mediterranean watershed: Comparison between SWAT and AnnAGNPS models. Environmental Research, 166, 363–376. https://doi.org/10.1016/j.envres.2018.06.029
  • Ackerman, D., Schiff, K. C., & Weisberg, S. B. (2005). Evaluating HSPF in an arid, urbanized watershed. Journal of the American Water Resources Association, Wiley Online Library, 41(2), 477–486. https://doi.org/10.1111/j.1752-1688.2005.tb03750.x
  • ArcSWAT. (2020). Soil and Water Assessment tool software. https://swat.tamu.edu/software/arcswat/.
  • Arnold, J. G., Kiniry, J. R., Srinivasan, R., Williams, J. R., Hanery, E. B., & Neitsch, S. L. (2012). Soil and water assessment tool input/output documentation version 2012. Texas Water Resources Institute, 7.
  • Behera, S., & Panda, R. K. (2006). Evaluation of management alternatives for an agricultural watershed in a sub-humid subtropical region using a physical process based model. Agriculture, Ecosystems & Environment, Elsevier, 113(1–4), 62–72. https://doi.org/10.1016/j.agee.2005.08.032
  • Borah, D. K., Ahmadisharaf, E., Padmanabhan, G., Imen, S., & Mohamoud, Y. M. (2019). Watershed models for development and implementation of total maximum daily loads. Journal of Hydrologic Engineering, 24(1), 03118001. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001724.
  • Cibin, R., Chaubey, I., Helmers, M., Sudheer, K. P., White, M. J. & Arnold J. G. (2018). ‘An improved representation of vegetative filter strips in SWAT’, Transactions of the ASAE. American Society of Agricultural and Biological Engineers.
  • Clark, M., & Tilman, D. (2017). Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environmental Research Letters, IOP Publishing, 12(6), 64016. https://iopscience.iop.org/article/10.1088/1748-9326/aa6cd5/meta
  • Dakhlalla, A. O., Parajuli, P. B., Ouyang, Y. & Schmitz, W. (2016). Evaluating the impacts of crop rotations on groundwater storage and recharge in an agricultural watershed. Agricultural Water Management, 163, 332–343. https://doi.org/10.1016/j.agwat.2015.10.001
  • Dakhlalla, A. O., & Parajuli, P. B. (2019). Assessing model parameters sensitivity and uncertainty of streamflow, sediment, and nutrient transport using SWAT. Information Processing in Agriculture, 6(1), 61–72. https://doi.org/10.1016/j.inpa.2018.08.007
  • Diaz-Ramirez, J. N., McAnally, W. H., & Martin, J. L. (2011). Analysis of hydrological processes applying the HSPF model in selected watersheds in Alabama, Mississippi, and Puerto Rico. Applied Engineering in Agriculture, American Society of Agricultural and Biological Engineers, 27(6), 937–954. https://doi.org/10.13031/2013.40627
  • Draper, N. R., & Smith, H. (1966). Applied regression analysis, New York, 1966. In EM Pugh and GH Winslow, The Analysis of physical Measurements (p. 26). Addison-Wesley.
  • Duda, P. B., Hummel, P. R., Donigian Jr, A. S., & Imhoff, J. C. (2012). BASINS/HSPF: Model use, calibration, and validation. Transactions of the ASABE, American Society of Agricultural and Biological Engineers, 55(4), 1523–1547. https://doi.org/10.13031/2013.42261
  • Gao, F., Feng, G., Han, M., Dash, P., Jenkins, J., & Liu, C. (2019). Assessment of surface water resources in the Big Sunflower River watershed using Coupled SWAT–MODFLOW model. Water, Multidisciplinary Digital Publishing Institute, 11(3), 528. https://doi.org/10.3390/w11030528
  • Gassman, P. W., Reyes, M. R., Green, C. H., & Arnold, J. G. (2007). The soil and water assessment tool: Historical development, applications, and future research directions. Transactions of the ASABE, American Society of Agricultural and Biological Engineers, 50(4), 1211–1250. https://doi.org/10.13031/2013.23637
  • Gitau, M. W., Gburek, W. J., & Bishop, P. L. (2008). Use of the SWAT model to quantify water quality effects of agricultural BMPs at the farm-scale level. Transactions of the ASABE, American Society of Agricultural and Biological Engineers, 51(6), 1925–1936. https://doi.org/10.13031/2013.25398
  • Im, S., Brannan, K. M., Mostaghimi, S., & Kim, S. M. (2007). Comparison of HSPF and SWAT models performance for streamflow and sediment yield prediction. Journal of Environmental Science and Health, Part A, Taylor & Francis, 42(11), 1561–1570. https://doi.org/10.1080/10934520701513456
  • Im, S., Brannan, K. M., & Mostaghimi, S. (2003). Simulating hydrologic and water quality impacts in an urbanizing watershed 1. JAWRA Journal of the American Water Resources Association, Wiley Online Library, 39(6), 1465–1479. https://doi.org/10.1111/j.1752-1688.2003.tb04432.x
  • Johnson, M. S., Coon, W. F., Mehta, V. K., Steenhuis, T. S., Brooks, E. S., & Boll, J. (2003). Application of two hydrologic models with different streamflow mechanisms to a hillslope dominated watershed in the northeastern US: A comparison of HSPF and SMR. Journal of Hydrology, 284(1), 57–76. https://doi.org/10.1016/j.jhydrol.2003.07.005
  • Karki, R., Tagert, M. L. M., & Paz, J. O. (2018). Evaluating the nutrient reduction and water supply benefits of an on-farm water storage (OFWS) system in East Mississippi. Agriculture, Ecosystems & Environment, 265, 476–487. https://doi.org/10.1016/j.agee.2018.06.024
  • Kim, S. M., Benham, B. L., Brannan, K. M., Zeckoski, R. W., & Doherty, J. (2007). Comparison of hydrologic calibration of HSPF using automatic and manual methods. Water Resources Research, Wiley Online Library, 43(1). https://doi.org/10.1029/2006WR004883
  • Krause, P., Boyle, D. P., & Bäse, F. (2005). Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 5, 89–97. https://doi.org/10.5194/adgeo-5-89-2005
  • Liu, Z., & Tong, S. T. Y. (2011). Using HSPF to model the hydrologic and water quality impacts of Riparian land-Use Change in a small watershed. Journal of Environmental Informatics, 17(1). https://doi.org/10.3808/jei.201100183
  • Luo, Y. (2019). Modeling the Mitigating effects of conservation practices for Pyrethroid uses in agricultural Areas of California. In Xiaotong Wang & Youji Wang (Eds.), Pesticides in surface water: Monitoring, modeling, Risk assessment, and management (pp. 275–289). ACS Publications.
  • Luo, Y., & Zhang, M. (2009). Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT. Environmental Pollution, 157(12), 3370–3378. https://doi.org/10.1016/j.envpol.2009.06.024
  • Maharjan, G. R., Park, Y. S., Kim, N. W., Shin, D. S., Choi, J. W., Hyun, G. W., Jeon, J. H., Ok, Y. S., & Lim, K. J. (2013). Evaluation of SWAT sub-daily streamflow estimation at small agricultural watershed in Korea. Frontiers of Environmental Science & Engineering, 7(1), 109–119. https://doi.org/10.1007/s11783-012-0418-7
  • Mekonnen, B. A., Mazurek, K. A., & Putz, G. (2016). Incorporating landscape depression heterogeneity into the soil and water assessment Tool (SWAT) using a probability distribution. Hydrological Processes, Wiley Online Library, 30(13), 2373–2389. https://doi.org/10.1002/hyp.10800
  • Merriman, K. R., et al. (2018). Calibration of a field-scale soil and water assessment Tool (SWAT) model with field placement of best management practices in Alger Creek, Michigan. In Sustainability (10(3), p. 851) Multidisciplinary Digital Publishing Institute.
  • Mishra, A., Froebrich, J., & Gassman, P. W. (2007a). Evaluation of the SWAT model for assessing sediment control structures in a small watershed in India. Transactions of the ASABE, American Society of Agricultural and Biological Engineers, 50(2), 469–477. https://doi.org/10.13031/2013.22637
  • Mishra, A., Kar, S., & Pandey, A. C. (2008). Comparison of SWAT with HSPF model in Predicting hydrologic processes of a small Multivegetated watershed. Journal of Agricultural Engineering, Indian Society of Agricultural Engineers, 45(4), 29–35.
  • Mishra, A., Kar, S., & Singh, V. P. (2007). Determination of streamflow and sediment yield from a small watershed in sub-humid subtropics using the HSPF model. Hydrological Processes: An International Journal, Wiley Online Library, 21(22), 3035–3045. https://doi.org/10.1002/hyp.6514
  • NAAS. (2020). ‘United States Department of Agriculture, National Agricultural Statistics Service’, USDA, NASS. https://nassgeodata.gmu.edu/CropScape/.
  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology, Elsevier, 10(3), 282–290.
  • Neitsch, S., Arnold, J., Kiniry, J.e.a., Srinivasan, R., & Williams, J. (2002). ‘Soil and water assessment tool user’s manual version 2000’, GSWRL report, 202(02–06).
  • Neitsch, S. L., Arnold, J. G., Kiniry, J. R., Williams, J. R., & King, K. W. (2005). Soil and water assessment tool theoretical documentation, version 2005. Temple, Tex.: USDA-ARS Grassland. Soil and Water Research Laboratory, 8.
  • Ni, X., & Parajuli, P. B. (2018). Evaluation of the impacts of BMPs and tailwater recovery system on surface and groundwater using satellite imagery and SWAT reservoir function. Agricultural Water Management, Elsevier, 210, 78–87. https://doi.org/10.1016/j.agwat.2018.07.027
  • NOAA. (2020). National Oceanic and Atmospheric Administration, National Centers for Environmental Information. https://www.ncdc.noaa.gov/.
  • NRCS. (2020). United States Department of Agriculture, Natural Resource Conservation Service. https://www.nrcs.usda.gov/wps/portal/nrcs/site/national/home/.
  • Ouyang, Y. (2012). A potential approach for low flow selection in water resource supply and management. Journal of Hydrology, 454–455, 56–63. https://doi.org/10.1016/j.jhydrol.2012.05.062
  • Ouyang, Y., Leininger, T. D., & Moran, M. (2013). Impacts of reforestation upon sediment load and water outflow in the lower Yazoo River watershed, Mississippi. Ecological Engineering, Elsevier, 61, 394–406. https://doi.org/10.1016/j.ecoleng.2013.09.057
  • Parajuli, P. B., Nelson, N. O., Frees, L. D., & Mankin, K. R. (2009). Comparison of AnnAGNPS and SWAT model simulation results in USDA-CEAP agricultural watersheds in south-central Kansas. Hydrological Processes: An International Journal, Wiley Online Library, 23(5), 748–763. https://doi.org/10.1002/hyp.7174
  • Park, Y. S., Park, J. H., Jang, W. S., Ryu, J. C., Kang, H., Choi, J., & Lim, K. J. (2011). Hydrologic response unit routing in SWAT to simulate effects of vegetated filter strip for south-Korean conditions based on VFSMOD. Water. Molecular Diversity Preservation International, 3(3), 819–842. https://doi.org/10.3390/w3030819
  • Rahman, M. M., Thompson, J. R., & Flower, R. J. (2016). An enhanced SWAT wetland module to quantify hydraulic interactions between riparian depressional wetlands, rivers and aquifers. Environmental Modelling & Software, Elsevier, 84, 263–289. https://doi.org/10.1016/j.envsoft.2016.07.003
  • Ribarova, I., Ninov, P., & Cooper, D. (2008). Modeling nutrient pollution during a first flood event using HSPF software: Iskar River case study, Bulgaria. Ecological Modelling, Elsevier, 211(1–2), 241–246. https://doi.org/10.1016/j.ecolmodel.2007.09.022
  • Risal, A., Bhattarai, R., Kum, D., Park, Y. S., Yang, J. E., & Lim, K. J. (2016). Application of Web ERosivity Module (WERM) for estimation of annual and monthly R factor in Korea. Catena, 147, 225–237. https://doi.org/10.1016/j.catena.2016.07.017
  • Risal, A., Lim, K. J., Bhattarai, R., Yang, J. E., Noh, H., Pathak, R., & Kim, J. (2018). Development of web-based WERM-S module for estimating spatially distributed rainfall erosivity index (EI30) using RADAR rainfall data. Catena, 161, 37–49. https://doi.org/10.1016/j.catena.2017.10.015
  • Risal, A., Parajuli, P. B., Dash, P., Ouyang, Y., & Linhoss, A. (2020). Sensitivity of hydrology and water quality to variation in land use and land cover data. Agricultural Water Management, 241, 106366. https://doi.org/10.1016/j.agwat.2020.106366
  • Risal, A., & Parajuli, P. B. (2019). Quantification and simulation of nutrient sources at watershed scale in Mississippi. Science of the Total Environment, Elsevier, 670, 633–643. https://doi.org/10.1016/j.scitotenv.2019.03.233
  • Saleh, A., Arnold, J. G., Gassman, P. W. A., Hauck, L. M., Rosenthal, W. D., Williams, J. R., & McFarland, A. M. S. (2000). Application of SWAT for the upper North Bosque River watershed. Transactions of the ASAE, American Society of Agricultural and Biological Engineers, 43(5), 1077. https://doi.org/10.13031/2013.3000
  • Saleh, A., & Du, B. (2004). Evaluation of SWAT and HSPF within BASINS program for the upper North Bosque River watershed in central Texas. Transactions of the ASAE, American Society of Agricultural and Biological Engineers, 47(4), 1039. https://doi.org/10.13031/2013.16577
  • Santhi, C., Arnold, J. G., Williams, J. R., Dugas, W. A., Srinivasan, R., & Hauck, L. M. (2001). Validation of the swat model on a large RWER basin with point and nonpoint sources 1. JAWRA Journal of the American Water Resources Association, Wiley Online Library, 37(5), 1169–1188. https://doi.org/10.1111/j.1752-1688.2001.tb03630.x
  • USEPA. (2003). Better Assessment Science Integrating Point and Nonpoint Sources, BASINS, Tutorial and Training. https://www.epa.gov/ceam/basins-tutorials-and-training.
  • USGS. (2020). United States Geological Survey. https://www.usgs.gov/.
  • Van Liew, M. W., Arnold, J. G., & Garbrecht, J. D. (2003). Hydrologic simulation on agricultural watersheds: Choosing between two models. Transactions of the ASAE, American Society of Agricultural and Biological Engineers, 46(6), 1539. https://doi.org/10.13031/2013.15643
  • Waidler, D., et al. (2011). Conservation practice modeling guide for SWAT and APEX. Texas Water Resources Institute. http://hdl.handle.net/1969.1/94928
  • Xie, H., Chen, L., & Shen, Z. (2015). Assessment of agricultural best management practices using models: Current issues and future perspectives. Water, Multidisciplinary Digital Publishing Institute, 7(3), 1088–1108. https://doi.org/10.3390/w7031088
  • Xie, H., & Lian, Y. (2013). Uncertainty-based evaluation and comparison of SWAT and HSPF applications to the Illinois River basin. Journal of Hydrology, Elsevier, 481, 119–131. https://doi.org/10.1016/j.jhydrol.2012.12.027
  • YMD. (2011). Yazoo Mississippi Delta Joint Water Management District. Annual work summary. www.ymd.org.
  • Zhang, X., & Zhang, M. (2011). Modeling effectiveness of agricultural BMPs to reduce sediment load and organophosphate pesticides in surface streamflow. Science of the Total Environment, Elsevier, 409(10), 1949–1958. https://doi.org/10.1016/j.scitotenv.2011.02.012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.