190
Views
2
CrossRef citations to date
0
Altmetric
Articles

Revisiting the automated grain sizing technique (AGS) for characterizing grain size distribution

ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon
Pages 89-98 | Received 08 Jul 2020, Accepted 11 Apr 2021, Published online: 08 May 2021

References

  • Banerjee, S., Chakraborti, P. C., & Saha, S. K. (2019). An automated methodology for grain segmentation and grain size measurement from optical micrographs. Measurement, 140, 142–150. https://doi.org/10.1016/j.measurement.2019.03.046
  • Bankole, S. A., Buckman, J., Stow, D., & Lever, H. (2019). Grain-size analysis of mudrocks: A new semi-automated method from SEM images. Journal of Petroleum Science and Engineering, 174, 244–256. https://doi.org/10.1016/j.petrol.2018.11.027
  • Barnard, P. L., Rubin, D. M., Harney, J., & Mustain, N. (2007). Field test comparison of an autocorrelation technique for determining grain size using a digital ‘beachball’ camera versus traditional methods. Sedimentary Geology, 201(1-2), 180–195. https://doi.org/10.1016/j.sedgeo.2007.05.016
  • Bujan, N., Cox, R., Lin, L.-C., Ducrocq, C., & Hwung, H.-H. (2018). Semiautomatic digital clast sizing of a cobble beach, nantian, Taiwan. Journal of Coastal Research, 34(6), 1367–1381. https://doi.org/10.2112/JCOASTRES-D-17-00165.1
  • Bunte, K., & Abt, S. R. (2001). Sampling surface and subsurface particle-size distributions in wadable gravel-and cobble-bed streams for analyses in sediment transport, hydraulics, and streambed monitoring. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 428.
  • Bunte, K., Abt, S. R., Potyondy, J. P., & Swingle, K. W. (2009). Comparison of three pebble count protocols (EMAP, PIBO and SFT) in two mountain gravel bed streams. JAWRA Journal of the American Water Resources Association, 45(5), 1209–1227. https://doi.org/10.1111/j.1752-1688.2009.00355.x
  • Buscombe, D. (2008). Estimation of grain-size distributions and associated parameters from digital images of sediment. Sedimentary Geology, 210(1), 1–10. https://doi.org/10.1016/j.sedgeo.2008.06.007
  • Buscombe, D., & Masselink, G. (2009). Grain-size information from the statistical properties of digital images of sediment. Sedimentology, 56(2), 421–438. https://doi.org/10.1111/j.1365-3091.2008.00977.x
  • Butler, J. B., Lane, S. N., & Chandler, J. H. (2001). Automated extraction of grain-size data from gravel surfaces using digital image processing. Journal of Hydraulic Research, 39(5), 519–529. https://doi.org/10.1080/00221686.2001.9628276
  • Chang, F.-J., & Chung, C.-H. (2012). Estimation of riverbed grain-size distribution using image-processing techniques. Journal of Hydrology, 440-441, 102–112. https://doi.org/10.1016/j.jhydrol.2012.03.032
  • Chung, C.-H., & Chang, F.-J. (2013). A refined automated grain sizing method for estimating river-bed grain size distribution of digital images. Journal of Hydrology, 486, 224–233. https://doi.org/10.1016/j.jhydrol.2013.01.026
  • Cislaghi, A., Chiaradia, E. A., & Bischetti, G. B. (2016). A comparison between different methods for determining grain distribution in coarse channel beds. International Journal of Sediment Research, 31(2), 97–109. https://doi.org/10.1016/j.ijsrc.2015.12.002
  • Detert, M., & Weitbrecht, V. (2012). Automatic object detection to analyze the geometry of gravel grains—A free stand-alone tool. In River flow (pp. 595–600). CRC Press. https://doi.org/10.1201/b13144
  • Folk, R. L., & Ward, W. C. (1957). Brazos river bar [Texas]; a study in the significance of grain size parameters. Journal of Sedimentary Research, 27(1), 3–26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
  • Fripp, J. B., & Diplas, P. (1993). Surface sampling in gravel streams. Journal of Hydraulic Engineering, 119(4), 473–490. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:4(473)
  • Graham, D. J., Reid, I., & Rice, S. P. (2005a). Automated sizing of coarse-grained sediments: Image-processing procedures. Mathematical Geology, 37(1), 1–28. https://doi.org/10.1007/s11004-005-8745-x
  • Graham, D. J., Rice, S. P., & Reid, I. (2005b). A transferable method for the automated grain sizing of river gravels. Water Resources Research, 41(7). https://doi.org/10.1029/2004WR003868
  • ImageJ. (2020). ImageJ (Version 1.53f). https://imagej.nih.gov/ij/download.html.
  • Inman, D. L. (1952). Measures for describing the size distribution of sediments. Journal of Sedimentary Research, 22(3), 125–145. https://doi.org/10.1306/D42694DB-2B26-11D7-8648000102C1865D
  • Kellerhals, R., & Bray, D. I. (1971). Sampling procedures for coarse fluvial sediments. Journal of the Hydraulics Division, 97(8), 1165–1180. https://doi.org/10.1061/JYCEAJ.0003044
  • Keyvani, A., & Strom, K. (2013). A fully-automated image processing technique to improve measurement of suspended particles and flocs by removing out-of-focus objects. Computers & Geosciences, 52, 189–198. https://doi.org/10.1016/j.cageo.2012.08.018
  • McEwan, I. K., Sheen, T. M., Cunningham, G. J., & Allen, A. R. (2000). Estimating the size composition of sediment surfaces through image analysis. Proceedings of the Institution of Civil Engineers - Water and Maritime Engineering, 142(4), 189–195. https://doi.org/10.1680/wame.2000.142.4.189
  • Purinton, B., & Bookhagen, B. (2019). Introducing PebbleCounts: A grain-sizing tool for photo surveys of dynamic gravel-bed rivers. Earth Surface Dynamics, 7(3). https://doi.org/10.5194/esurf-7-859-2019
  • Rubin, D. M. (2004). A simple autocorrelation algorithm for determining grain size from digital images of sediment. Journal of Sedimentary Research, 74(1), 160–165. https://doi.org/10.1306/052203740160
  • Simes, L. C., & Ferguson, R. I. (2003). Information on grain sizes in gravel-bed rivers by automated image analysis. Journal of Sedimentary Research, 73(4), 630–636. https://doi.org/10.1306/112102730630
  • Stähly, S., Friedrich, H., & Detert, M. (2017). Size ratio of fluvial grains’ intermediate axes assessed by image processing and square-hole sieving. Journal of Hydraulic Engineering, 143(6). https://doi.org/10.1061/(ASCE)HY.1943-7900.0001286
  • Strom, K., Kuhns, R., & Lucas, H. (2010). Comparison of automated image-based grain sizing to standard pebble-count methods. Journal of Hydraulic Engineering, 136(8), 461–473. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000198
  • Sulaiman, M. S., Abood, M. M., Sinnakaudan, S. K., Shukor, M. R., Goh, Q. Y., & Chung, X. Z. (2019). Assessing and solving multicollinearity in sediment transport prediction models using principal component analysis. ISH Journal of Hydraulic Engineering. https://doi.org/10.1080/09715010.2019.1653799.
  • Sulaiman, M. S., Sinnakaudan, S. K., Ng, S. F., & Strom, K. (2014). Application of automated grain sizing technique (AGS) for bed load samples at Rasil River: A case study for supply limited channel. CATENA, 121, 330–343. https://doi.org/10.1016/j.catena.2014.05.013
  • Varga, G., Kovács, J., Szalai, Z., Cserháti, C., & Újvári, G. (2018). Granulometric characterization of paleosols in loess series by automated static image analysis. Sedimentary Geology, 370, 1–14. https://doi.org/10.1016/j.sedgeo.2018.04.001
  • Wang, C., Lin, X., & Chen, C. (2019). Gravel image auto-segmentation based on an improved normalized cuts algorithm. Journal of Applied Mathematics and Physics, 07(3), 603–610. https://doi.org/10.4236/jamp.2019.73044
  • WaveMetrics. (2020). IgorPro (version 8). https://www.wavemetrics.com/.
  • Wolman, M. G. (1954). A method of sampling coarse river-Bed material. Transactions, American Geophysical Union, 35(6), 951–956. https://doi.org/10.1029/TR035i006p00951
  • Yang, J.-h., & Fang, H.-y. (2019). Research into different methods for measuring the particle-size distribution of aggregates: An experimental comparison. Construction and Building Materials, 221, 469–478. https://doi.org/10.1016/j.conbuildmat.2019.06.109
  • Yang, J.-H., Fang, H.-Y., & Chen, S.-J. (2019). Development of particle size and shape measuring system for machine-made sand. Particulate Science and Technology, 37(8), 974–980. https://doi.org/10.1080/02726351.2018.1496958

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.