231
Views
2
CrossRef citations to date
0
Altmetric
Articles

Multi-scale flooding hazards evaluation using a nested flood simulation model: case study of Jamuna River, Bangladesh

ORCID Icon, , , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 167-179 | Received 25 May 2020, Accepted 16 May 2021, Published online: 18 Jun 2021

References

  • Alarcon, V. J., Johnson, D., McAnally, W. H., Zwaag, J., van der, D. I., & Cartwright, J. (2014). Nested hydrodynamic modeling of a coastal river applying dynamic-coupling. Water Resources Management, 28(10), 3227–3240. https://doi.org/10.1007/s11269-014-0671-6
  • Ashworth, P. J., Best, J. L., Roden, J. E., Bristow, C. S., & Klaassen, G. J. (2000). Morphological evolution and dynamics of a large, sand braid-bar, Jamuna River, Bangladesh. Sedimentology, 47(3), 533–555. https://doi.org/10.1046/j.1365-3091.2000.00305.x
  • Baki, A. B. M., & Gan, T. Y. (2012). Riverbank migration and island dynamics of the braided Jamuna River of the Ganges–Brahmaputra basin using multi-temporal landsat images. Quaternary International, 263(14), 148–161. https://doi.org/10.1016/j.quaint.2012.03.016
  • Ball, J., Babister, M., Nathan, R., Weeks, W., Weinmann, E., Retallick, M., & Testoni, I. (2016). Australian rainfall and runoff: A guide to flood estimation. Commonwealth of Australia, ISBN 978-192529-7072.
  • Bates, P. D., & De Roo, A. P. J. (2000). A simple raster based model for flood inundation simulation. Journal of Hydrology, 236(1–2), 54–77. https://doi.org/10.1016/S0022-1694(00)00278-X
  • Best, J. L., Ashworth, P. J., Bristow, C. S., & Roden, J. (2003). Three-dimensional sedimentary architecture of a large, mid-channel sand braid bar, Jamuna River, Bangladesh. Journal of Sedimentary Research, 73(4), 516–530. https://doi.org/10.1306/010603730516
  • Black, P. E. (1996). Watershed hydrology (2nd ed). Taylor and Francis.
  • Blasco, F., Bellan, M. F., & Chaudhury, M. U. (1992). Estimating the extent of floods in Bangladesh using spot data. Remote Sensing of Environment, 39(3), 167–178. https://doi.org/10.1016/0034-4257(92)90083-V
  • Chowdhury, M. R. (2000). An assessment of flood forecasting in Bangladesh: The experience of the 1998 flood. Natural Hazards, 22(2), 139–163. https://doi.org/10.1023/A:1008151023157
  • Dalrymple, T. (1960). Manual of Hydrology: Part 3. Flood-Flow Techniques. Geological Survey Water-Supply Paper 1543-A. Methods and practices of the Geological Survey, U.S. Department of the Interior.
  • Das, J. D., & Saraf, A. K. (2007). Technical Note: Remote sensing in the mapping of the Brahmaputra/Jamuna River channel patterns and its relation to various landforms and tectonic environment. International Journal of Remote Sensing, 28(16), 3619–3631. https://doi.org/10.1080/01431160601009664
  • Debreu, L., & Blayo, E. (2008). Two-way embedding algorithms: A review. Ocean Dynamics, 58(5–6), 415–428. https://doi.org/10.1007/s10236-008-0150-9
  • Filliben, J. J. (1975). The probability Plot Correlation coefficient test for normality. Technometrics, 17(1), 111–117. https://doi.org/10.1080/00401706.1975.10489279
  • Greenwood, J. A., Landwehr, J. M., Matalas, N. C., & Wallis, J. R. (1979). Probability Weighted Moments: definitions and relation to parameters of seven distributions expressible in inverse form. Water Resources Research, 15(6), 1049–1054. https://doi.org/10.1029/WR015i005p01049
  • Gumbel, E. J. (1945). Flood estimated by probability methods. Engineering News-Record, 134(24), 97–101.
  • Hartnett, M., & Nash, S. (2017). High-resolution flood modelling of urban areas using MSN flood. Water Science and Engineering, 10(3), 175–183. https://doi.org/10.1016/j.wse.2017.10.003
  • Hashimoto, M., Kawaike, K., Nakagawa, H., & Zhang, H. (2015). Assessing the risk of river flood from Jamuna River using a nested flood simulation model. The 5th International Conference of Water and Flood Management, 6-8 March 2015, Dhaka, Bangladesh, 485–492.
  • Hoch, J. M., Eilander, D., Ikeuchi, H., Baart, F., & Winsemius, H. C. (2019). Integrating large-scale hydrology and hydrodynamics for nested flood hazard modelling from the mountains to the coast. Natural Hazards Earth System Discussion, 1–18. https://nhess.copernicus.org/preprints/nhess-2019-75/nhess-2019-75.pdf
  • Horritt, M. S. (2005). A methodology for the validation of uncertain flood inundation models. Journal of Hydrology, 326(1-4), 153–165. https://doi.org/10.1016/j.jhydrol.2005.10.027
  • Inoue, T., Abe, T., Koshimura, S., Musa, A., Murashima, Y., & Kobayashi, H. (2019). Development and validation of a tsunami numerical model with the polygonally nested grid system and its MPI-parallelization for real-time tsunami inundation forecast on a regional scale. Journal of Disaster Research, 14(3), 416–434. https://doi.org/10.20965/jdr.2019.p0416
  • Islam, A. S. (2010). Improving flood forecasting in Bangladesh using an artificial neural network. Journal of Hydroinformatics, 12(3), 351–364. https://doi.org/10.2166/hydro.2009.085
  • Islam, A. S., Bala, S. K., & Haque, A. (2010). Flood inundation map of Bangladesh using MODIS time-series images. Journal of Flood Risk Management, 3(3), 210–222. https://doi.org/10.1111/j.1753-318X.2010.01074.x
  • Iwasa, Y., & Inoue, K. (1982). Mathematical simulation of channel and overland flood flows in view of flood disaster engineering. Journal of Natural Disaster Science, 4(1), 1–30.
  • Japan International Corporation Agency. (2017). Final report of the project for capacity development of management for sustainable water related infrastructure in the people’s republic of Bangladesh. p. 35.
  • Kuiry, S. N., Sen, D., & Bates, P. D. (2010). Coupled 1D-quasi-2D flood inundation model with unstructured grids. Journal of Hydraulic Engineering, 136(8), 493–506. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000211
  • Lal, A. M. W. (1998). Weighted implicit finite-volume model for overland flow. Journal of Hydraulic Engineering, 124(9), 941–950. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:9(941)
  • Landwehr, J. M., Matalas, N. C., & Wallis, J. R. (1979). Probability Weighted Moments compared with some traditional techniques in Estimating Gumbel parameters and quantiles. Water Resources Research, 15(5), 1055–1064. https://doi.org/10.1029/WR015i005p01055
  • Maidment, D. R. (1993). Handbook of hydrology. McGraw-Hill. ISBN 9780070397323.
  • Nakagawa, H., Zhang, H., Baba, Y., Kawaike, K., & Teraguchi, H. (2013). Hydraulic characteristics of typical bank-protection works along the Brahmaputra/Jamuna River, Bangladesh. Journal of Flood Risk Management, 6(4), 345–359. https://doi.org/10.1111/jfr3.12021
  • Paul, B. K. (1984). Perception of and agricultural adjustment to floods in Jamuna floodplain, Bangladesh. Human Ecology, 12(1), 3–19. https://doi.org/10.1007/BF01531281
  • Phien, H. N. (1987). A review of methods of parameter estimation for the extreme value type I distribution. Journal of Hydrology, 90(3–4), 251–268. https://doi.org/10.1016/0022-1694(87)90070-9
  • Pilgrim, D. H. (1987). Australian Rainfall and Runoff: A Guide to flood estimation. The Institution of Engineers.
  • Poots, A. D., & Cochrane, S. R. (1979). Design flood estimation for bridges, culverts and channel improvement works on small rural catchments: Technical Note 229. Proceedings of the Institution of Civil Engineers, Part 1, 66(4).
  • Savage, J. T. S., Bates, P., Freer, J., Neal, J., & Aronica, G. (2016). When does spatial resolution become spurious in probabilistic flood inundation predictions? Hydrological Processes, 30(13), 2014–2032. https://doi.org/10.1002/hyp.10749
  • Sayama, T., Ozawa, G., Kawakami, T., Nabesaka, S., & Fukami, K. (2012). Rainfall–runoff–inundation analysis of the 2010 Pakistan flood in the Kabul River basin. Hydrological Sciences Journal, 57(2), 298–312. https://doi.org/10.1080/02626667.2011.644245
  • Son, K., & Jeong, W. (2019). Numerical simulation of flood inundation in a small-scale coastal urban area due to intense rainfall and poor inner drainage. Water, 11(11), 2269. https://doi.org/10.3390/w11112269
  • Stedinger, J. R. (1980). Fitting log normal distributions to hydrologic data. Water Resources Research, 16(3), 481–490. https://doi.org/10.1029/WR016i003p00481
  • Stedinger, J. R., Vogel, R. M., & Georgiou, E. F. (1993). Frequency analysis of extreme events, chapter 18, Handbook of Hydrology, ed. D.R. Maidment. McGraw-Hill Inc.
  • Subramanya, K. (2008). Engineering hydrology. McGraw Hills Companies.
  • Takeda, M., Matsuo, N., & Pokharel, P. (2009). Study on nesting model by using h-VA inundation analysis method. Annual Journal of Hydraulic Engineering, 53, 835–840.
  • Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38(1), 55–94. https://doi.org/10.2307/210739
  • U. S. Geological Survey. (1982). Guidelines for determining flood flow frequency. Bulletin #17B of the Hydrology Subcommittee. Reston, Virginia, 14–20.
  • Wang, D., Liu, Y., & Kumar, M. (2018). Using nested discretization for a detailed yet computationally efficient simulation of local hydrology in a distributed hydrologic model. Scientific Reports, 8(1), 5785. https://doi.org/10.1038/s41598-018-24122-7
  • Xanthopoulos, T., & Koutitas, C. (1976). Numerical simulation of a two-dimensional flood wave propagation due to dam failure. Journal of Hydraulic Research, 14(4), 321–331. https://doi.org/10.1080/00221687609499664
  • Yamazaki, D., Kanae, S., Kim, H., & Oki, T. (2011). A physically based description of floodplain inundation dynamics in a global river routing model. Water Resources Research, 47(W04501), 1–21. https://doi.org/10.1029/2010WR009726
  • Zhang, X., Oishi, S., Ishidaira, H., & Takeuchi, K. (2003). Practical aspects in the simulation of flood inundation using 2D shallow water equation on a complex land-cover. Journal of Japan Society of Hydrology and Water Resources, 16(5), 501–517. https://doi.org/10.3178/jjshwr.16.501

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.