1,173
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

High-resolution assessment of riverbank erosion and stabilization techniques with associated water quality implications

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 16 Feb 2023, Accepted 13 May 2023, Published online: 26 May 2023

References

  • Angelopoulous, N. V., Cowx, I. G., & Buijse, A. D. (2017). Integrated planning framework for successful river restoration projects: Upscaling lessons learnt from European case studies. Environmental Science and Policy, 76, 12–22. https://doi.org/10.1016/j.envsci.2017.06.005
  • Augustowski, K., & Kukulak, J. (2021). The role of frost processes in the retreat of River Banks. Water, 13(13), 1812. https://doi.org/10.3390/w13131812
  • Balana, B. B., Vinten, A., & Slee, B. (2011). A review on cost-effectiveness analysis of agri-environmental measures related to the EU WFD: Key issues, methods, and applications. Ecological Economics, 70(6), 1021–1031. https://doi.org/10.1016/j.ecolecon.2010.12.020
  • Barman, T. (2016). Relation of riverbank erosion With agricultural landuse practices on floodplain of River Jaldhaka (Mansai) at Tikiner Char, Bhowerthana Village, Coochbehar, Westbengal, India. International Journal of Research in Geography, 2(2), 1–7. https://doi.org/10.20431/2454-8685.0202001
  • Bastola, S., Murphy, C., & Sweeney, J. (2011). The role of hydrological modelling uncertainties in climate change impact assessments of Irish river catchments. Advances in Water Resources, 34(5), 562–576. https://doi.org/10.1016/j.advwatres.2011.01.008
  • Blankenberg, A. G. B., & Skarbøvik, E. (2020). Phosphorus retention, erosion protection and farmers’ perceptions of riparian buffer zones with grass and natural vegetation: Case studies from South-Eastern Norway. Ambio, 49(11), 1838–1849. https://doi.org/10.1007/s13280-020-01361-5
  • Brecheisen, Z. S., & Richter, D. B. (2021). Gully-erosion estimation and terrain reconstruction using analyses of microtopographic roughness and LiDAR. CATENA, 202, 105264. https://doi.org/10.1016/j.catena.2021.105264
  • Brown, D. R. N., Brinkman, T. J., Bolton, R. W., Brown, C. L., Cold, H. S., Hollingsworh, T. N., & Vebyla, D. L. (2020). Implications of climate variability and changing seasonal hydrology for subarctic riverbank erosion. Climate Change, 162(2), 1–20. https://doi.org/10.1007/s10584-020-02748-9
  • Campbell, J. M., Jordan, P., & Arnscheidt, J. (2015). Using high-resolution phosphorus data to investigate mitigation measures in headwater river catchments. Hydrology and Earth System Sciences, 19(1), 453–464. https://doi.org/10.5194/hess-19-453-2015
  • Cassidy, R., Thomas, I. A., Higgins, A., Bailey, J. S., & Jordan, P. (2019). A carrying capacity framework for soil phosphorus and hydrological sensitivity from farm to catchment scales. Science of The Total Environment, 687, 277–286. https://doi.org/10.1016/j.scitotenv.2019.05.453
  • Couper, P. R., & Maddock, I. P. (2001). Subaerial river bank erosion processes and their interaction with other bank erosion mechanisms on the River Arrow, Warwickshire, UK. Earth Surface Processes and Landforms, 26(6), 631–646. https://doi.org/10.1002/esp.212
  • Cresswell, H. P., & Hamilton, H. (2002). Particle size analysis. In N. J. McKenzie, H. P. Cresswell, & K. J. Coughlan (Eds.), Soil physical measurement and interpretation for land evaluation. Australian soil and land survey handbook series, Vol 5 (pp. 224–239). CSIRO Publishing.
  • De Rose, R. C., & Basher, L. R. (2011). Measurement of river bank and cliff erosion from sequential LIDAR and historical aerial photography. Geomorphology, 126(1–2), 132–147. https://doi.org/10.1016/j.geomorph.2010.10.037
  • Doody, D. G., Rothwell, S. A., Ortega, J. M., Johnston, C., Anderson, A., Okumah, M., Lyon, C., Sherry, E., & Withers, P. J. A. (2020). Phosphorus stock and flows in the northern Ireland food system. RePhoKUs Project Report, October 2020.
  • East, A. E., & Sankey, J. B. (2020). Geomorphic and sedimentary effects of modern climate change: Current and anticipated future conditions in the Western United States. Review of Geophysics, 58(4), e2019RG000692. https://doi.org/10.1029/2019RG000692
  • Haas, F., Heckmann, T., Wichmann, V., & Becht, M. (2012). Runout analysis of a large rockfall in the Dolomites/Italian Alps using LIDAR derived particle sizes and shapes. Earth Surface Processes and Landforms, 37(13), 1444–1455. https://doi.org/10.1002/esp.3295
  • Hamshaw, S. D., Bryce, T., O’Neill Dunne, J., Rizzo, D. M., Frolik, J., Engel, T., & Dewoolkar, M. M. (2017). Quantifying Streambank Erosion Using Unmanned Aerial Systems at Site-Specific and River Network Scales. Geotechnical Frontiers. GSP 278.
  • Hayes, E., Higgins, S., Geris, J., Nicholl, G., & Mullan, D. (2023). Weighted risk assessment of critical source areas for soil phosphorus losses through surface runoff mechanisms. CATENA, 225, 107027. https://doi.org/10.1016/j.catena.2023.107027
  • Henshaw, A. J., Thorne, C. R., & Clifford, N. J. (2013). Identifying causes and controls of river bank erosion in a British upland catchment. CATENA, 100, 107–119. https://doi.org/10.1016/j.catena.2012.07.015
  • Ishee, E. R., Ross, D. S., Garvey, K. M., Bourgault, R. R., & Ford, C. R. (2015). Phosphorus characterization and contribution from Eroding Streambank Soils of Vermont’s Lake Champlain Basin. Journal of Environmental Quality, 44(6), 1745–1753. https://doi.org/10.2134/jeq2015.02.0108
  • Kay, A. L., Watts, G., Wells, S. C., & Allen, S. (2020). The impact of climate change on U. K. River flows: A preliminary comparison of two generations of probabilistic climate projections. Hydrological Processes, 34(4), 1081–1088. https://doi.org/10.1002/hyp.13644
  • Kendon, M., McCarthy, M., Jevrejeva, S., Matthews, A., Sparks, T., & Garforth, J. (2021). State of the UK climate 2020. International Journal of Climatology, 41(s2), 1–76. https://doi.org/10.1002/joc.7285
  • Kessler, A. C., Gupta, S. C., & Brown, M. K. (2013). Assessment of river bank erosion in Southern Minnesota rivers post European settlement. Geomorphology, 201, 312–322. https://doi.org/10.1016/j.geomorph.2013.07.006
  • Kessler, A. C., Gupta, S. C., Dolliver, H. A. S., & Thoma, D. P. (2012). Lidar quantification of bank erosion in Blue Earth County, Minnesota. Journal of Environmental Quality, 41(1), 197–207. https://doi.org/10.2134/jeq2011.0181
  • Kronvang, B., Audet, J., Baattrup-Pedersen, A., Jensen, H. S., & Larsen, S. E. (2012). Phosphorus load to surface water from Bank Erosion in a Danish Lowland River Basin. Journal of Environmental Quality, 41(2), 304–313. https://doi.org/10.2134/jeq2010.0434
  • Lerma, A. N., Ayache, B., Ulvoas, B., Paris, F., Bernon, N., Bulteau, T., & Mallet, C. (2019). Pluriannual beach-dune evolutions at regional scale: Erosion and recovery sequences analysis along the aquitaine coast based on airborne LiDAR data. Continental Shelf Research, 189, 103974. https://doi.org/10.1016/j.csr.2019.103974
  • Longoni, L., Papini, M., Brambilla, D., Barazzetti, L., Roncoroni, F., Scaioni, M., & Ivanov, V. I. (2016). Monitoring Riverbank Erosion in mountain catchments using Terrestrial Laser Scanning. Remote Sensing, 8(3), 241. https://doi.org/10.3390/rs8030241
  • Lowe, J. A., Bernie, D., Bett, P., Bricheno, L., Brown, S., Calvert, D., Clark, R., Eagle, K., Edwards, T., Fosser, G., Fung, F., Gohar, L., Good, P., Gregory, J., Harris, G., Howard, T., Kaye, N., Kendon, E., Krijnen, J., … Belcher, S. (2018). UKCP18 Science Overview Report, November 2018. Retrieved August 06, 2022, from https://www.metoffice.gov.uk/pub/data/weather/uk/ukcp18/science-reports/UKCP18-Overview-report.pdf.
  • Macfall, J., Robinette, P., & Welch, D. (2014). Factors influencing bank geomorphology and erosion of the Haw River, a high order river in North Carolina, since European Settlement. PLOS ONE, 9(10), e110170. https://doi.org/10.1371/journal.pone.0110170
  • Mason, J., & Mohrig, D. (2018). Using time-lapse lidar to quantify river bend evolution on the Meandering Coastal Trinity River, Texas, USA. Journal of Geophysical Research: Earth Surface, 123(5), 1133–1144. https://doi.org/10.1029/2017JF004492
  • McDonald, N., Wall, D., Mellander, P., Buckley, C., Shore, M., Shortle, G., Leach, S., Burgess, E., O’Connell, T., & Jordan, P. (2019). Field scale phosphorus balances and legacy soil pressures in mixed-land use catchments. Agriculture, Ecosystems and Environment, 274, 14–23. https://doi.org/10.1016/j.agee.2018.12.014
  • Mellander, P. E., & Jordan, P. (2021). Charting a perfect storm of water quality pressures. Science of The Total Environment, 787, 147576. https://doi.org/10.1016/j.scitotenv.2021.147576
  • Ministry of Agriculture, Fisheries and Food (MAFF). (1986). The analysis of agricultural materials. Third edition, reference book 427. Her Majesty's Stationary Office.
  • Naimah, Y., & Roslan, Z. A. (2015). Forecasting River Bank erosion with regards to Rainfall Erosivity and soil erodibility. WIT Transactions on The Built Environment, 150, 67–77. https://doi.org/10.2495/DMAN150071
  • Neugrig, F., Kaiser, A., Schmidt, J., Becht, M., & Haas, F. (2014, December 11–14). Quantification, analysis and modelling of soil erosion on steep slopes using LiDAR and UAV photographs. Sediment Dynamics from the Summit to the Sea, Proceedings of a symposium, New Orleans, Louisiana, USA.
  • Olsen, S. R., & Sommers, L. E. (1982). Phosphorus. In A. L. Page (Ed.), Methods of soil analysis part 2 chemical and microbiological properties (pp. 403–430). American Society of Agronomy, Soil Science Society of America.
  • Robins, L., Burt, T. P., Bracken, L. J., Boardman, J., & Thompson, D. B. A. (2017). Making water policy work in the United Kingdom: A case study of practical approaches to strengthening complex, multi-tiered systems of water governance. Environmental Science and Policy, 71, 41–55. https://doi.org/10.1016/j.envsci.2017.01.008
  • Russell, M., Mittlstet, A. R., Messer, T. L., Korus, J. T., & Joeckel, R. M. (2021). Evolution of three streambanks before and after stabilization and record flooding. Ecological Engineering, 170, 106357. https://doi.org/10.1016/j.ecoleng.2021.106357
  • Sharpley, A. N. (2003). Soil mixing to decrease surface stratification of phosphorus in manured soils. Journal of Environmental Quality, 32(4), 1375–1384. https://doi.org/10.2134/jeq2003.1375
  • Smith, H. G., Spiekermann, R., Dymond, J., & Basher, L. (2019). Predicting spatial patterns in riverbank erosion for catchment sediment budgets. New Zealand Journal of Marine and Freshwater Research, 53(3), 338–362. https://doi.org/10.1080/00288330.2018.1561475
  • Steele-Dunne, S., Lynch, P., McGarth, R., Semmler, T., Wang, S., Hanafin, J., & Nolan, P. (2008). The impacts of climate change on hydrology in Ireland. Journal of Hydrology, 356(1–2), 28–45. https://doi.org/10.1016/j.jhydrol.2008.03.025
  • Thoma, D. P., Gupta, S. C., Bauer, M. E., & Kirchoff, C. E. (2005). Airborne laser scanning for riverbank erosion assessment. Remote Sensing of Environment, 95(4), 493–501. https://doi.org/10.1016/j.rse.2005.01.012
  • Ulén, B., & Kalisky, T. (2005). Water erosion and phosphorus problems in an agricultural catchment—Need for natural research for implementation of the EU water framework directive. Environmental Science and Policy, 8(5), 477–484. https://doi.org/10.1016/j.envsci.2005.06.005
  • Walling, D. E., & Collins, A. L. (2005). Suspended sediment sources in British rivers. Sediment Budgets 1 (Proceedings of symposium S1 held during the Seventh IAHS Scientific Assembly at Foz do Iguaçu, Brazil, April 2005). IAHS Publ. 291.
  • Watts, C. D., Naden, P. S., Cooper, D. M., & Gannon, B. (2003). Application of a regional procedure to assess the risk to fish from high sediment concentrations. Science of The Total Environment, 314–316, 551–556. https://doi.org/10.1016/S0048-9697(03)00073-1
  • Wilson, J. L., & Everard, M. (2017). Real-time consequences of riparian cattle trampling for mobilization of sediment, nutrients and bacteria in a British lowland river. International Journal of River Basin Management, 16(2), 231–244. https://doi.org/10.1080/15715124.2017.1402778