170
Views
0
CrossRef citations to date
0
Altmetric
Asset management

A comparison between multivariate adaptive regression splines and regressive convolution neural network with support vector regression for pipe burst rate prediction on limited dataset

, &
Pages 1813-1823 | Received 26 Jul 2021, Accepted 19 Jul 2022, Published online: 29 Jul 2022

References

  • Achim, D., F. Ghotb, and K. J. McManus. 2007. “Prediction of Water Pipe Asset Life Using Neural Networks.” Journal of Infrastructure Systems 13 (1): 26–30. doi:10.1061/(ASCE)1076-0342(2007).
  • Alexopoulos, E. C. 2010. “Introduction to Multivariate Regression Analysis.” Hippokratia 14: 23–28.
  • Alizadeh, Z., J. Yazdi, S. Mohammadiun, K. Hewage, R. Sadiq, et al. 2019. “Evaluation of Data Driven Models for Pipe Burst Prediction in Urban Water Distribution Systems.” Urban Water Journal 16 (2): .136–145. doi:10.1080/1573062X.2019.1637004.
  • Amiri-Ardakani, Yaser, and Mohammad Najafzadeh. 2021. “Pipe Break Rate Assessment while considering Physical and Operational Factors: A Methodology Based on Global Positioning System and data-driven Techniques.” Water Resources Management 35 (11): 3703–3720. doi:10.1007/s11269-021-02911-6.
  • Berardi, L., O. Giustolisi, Z. Kapelan, and D. A. Savic. 2008. “Development of Pipe Deterioration Models for Water Distribution Systems Using EPR.” Journal of Hydroinformatics 10 (2): 113–126. doi:10.2166/hydro.2008.012.
  • Boryczko, Krzysztof, I. Piegdoń, D. Szpak, J. Żywiec, et al. 2021. “Risk Assessment of Lack of Water Supply Using the Hydraulic Model of the Water Supply.” Resources 10 (5): 43. doi:10.3390/resources10050043.
  • Brett, Snider, and Edward A. McBean. 2020. “Improving Urban Water Security through pipe-break Prediction Models: Machine Learning or Survival Analysis.” Journal of Environmental Engineering 146 (3): 04019129. doi:10.1061/(ASCE)EE.1943-7870.0001657.
  • Christodoulou, S., P. Aslani, and A Vanreterghem. 2004. “A Risk Analysis Framework for Evaluating Structural Degradation of Water Mains in Urban Settings, Using Neurofuzzy Systems and Statistical Modeling Techniques.” In Proceedings of the World Water and Environmental Resources Congress and Related Symposia. Philadelphia, PA: ASCE.
  • Deo, R. C., O. Kisi, and V. P. Singh. 2017. “Drought Forecasting in Eastern Australia Using Multivariate Adaptive Regression Spline, Least Square Support Vector Machine and M5Tree Model.” Atmospheric Research 184: 149–175. doi:10.1016/j.atmosres.2016.10.004.
  • Emamgholizadeh, S., S. Bateni, D. Shahsavani, T. Ashrafi, and H. Ghorbani. 2015. “Estimation of Soil Cation Exchange Capacity Using Genetic Expression Programming (GEP) and Multivariate Adaptive Regression Splines (MARS).” Journal of Hydrology 529. doi:10.1016/j.jhydrol.2015.08.025.
  • Farmani, Raziyeh, K. Kakoudakis, K. Behzadian, D. Butler, et al. 2017. “Pipe Failure Prediction in Water Distribution Systems considering Static and Dynamic Factors”. Procedia Engineering 186: 117–126. doi:10.1016/j.proeng.2017.03.217.
  • Forghani, A., and R. Peralta. 2017. “Transport Modeling and Multivariate Adaptive Regression Splines for Evaluating Performance of ASR Systems in Freshwater Aquifers.” Journal of Hydrology 553: 540–548. doi:10.1016/j.jhydrol.2017.08.012.
  • Friedman, J. H. 1991. “Multivariate Adaptive Regression Splines.” Annals of Statistics 19 (1): 1–67. doi:10.1214/aos/1176347963.
  • Grigg, N. 2007. Main Break Prediction, Prevention and Control. Denver, CO: American Water Works Research Foundation.
  • Heddam, S., and O Kisi. 2018. “Modelling Daily Dissolved Oxygen Concentration Using Least Square Support Vector Machine,multivariate Adaptive Regression Splines and M5 Model Tree.” Journal of Hydrology 559: 499–509. doi:10.1016/j.jhydrol.2018.02.061.
  • Kakoudakis, K. 2019. “Pipe Failure Prediction and Impacts Assessment in a Water Distribution Network, ac Thesis for the Degree of Doctor of Philosophy in Engineering.” University of Exeter, March.
  • Kleiner, Y., and B. Rajani. 2010. “I-warp: Individual Water Main Renewal Planner.” Drinking Water Engineering and Science 3 (1): 71–77. doi:10.5194/dwes-3-71-2010.
  • Konstantinou, Charalampos, and Stoianov Ivan. 2020. “A Comparative Study of Statistical and Machine Learning Methods to Infer Causes of Pipe Breaks in Water Supply Networks.” Urban Water Journal 17 (6): 534–548. doi:10.1080/1573062X.2020.1800758.
  • Kutylowska, M. 2017. “Regression Methods for Predicting Rate and Type of Failures of Water Conduits.” Ecological Chemistry and Engineering A 24 (2): 193–205.
  • Kutylowska, M. 2018. “Forecasting Failure Rate of Water Pipes.” Water Supply 19 (1): 264–273. doi:10.2166/ws.2018.078.
  • Kutylowska, M. 2019. “Application of MARSplines Method for Failure Rate Prediction.” Periodica Polytechnica Civil Engineering 63 (1): 87–92.
  • Rajani, B., and Y Kleiner. 2001. “Comprehensive Review of Structural Deterioration of Water Mains: Physically Based Models.” Urban Water 3 (3): 151–164. doi:10.1016/S1462-0758(01)00032-2.
  • Rajani, B., and S. Tesfamariam. 2007. “Estimating Time to Failure of Cast Iron Water Mains.” Proceedings of the ICE - Water Management 160 (2): 83–88.
  • Randall-Smith, M., A. Russell, and R. Oliphant. 1992. Guidance Manual for the Structural Condition Assessment of the Trunk Mains. Swindon, UK: Water Research Centre.
  • Rezaie-Balf, M. 2019. “Multivariate Adaptive Regression Splines Model for Prediction of Local Scour Depth Downstream of an Apron under 2D Horizontal Jets.” Iranian Journal of Science and Technology - Transactions of Civil Engineering 43 (1): 103–115. doi:10.1007/s40996-018-0151-y.
  • Safari, M. J. S. 2019. “Decision Tree (DT), Generalized Regression Neural Network (GR) and Multivariate Adaptive Regression Splines (MARS) Models for Sediment Transport in Sewer Pipes.” Water Science & Technology 79: 1113–1122. doi:10.2166/wst.2019.106.
  • Sharda, V., S. Prasher, R. Patel, P. Ojasvi, and C. Prakash. 2008. “Performance of Multivariate Adaptive Regression Splines (MARS) in Predicting Runoff in mid-Himalayan micro-watersheds with Limited data/Performances de Régressions Par Splines Multiples Et Adaptives (MARS) Pour la Prévision D’écoulement Au Sein de micro-bassins Versants Himalayens D’altitudes Intermédiaires Avec Peu de Données.” Hydrological Sciences Journal 53 (6): 1165–1175.
  • Tabesh, M., J. Soltani, R. Farmani, and D. Savic. 2009. “Assessing Pipe Failure Rate and Mechanical Reliability of Water Distribution Networks Using Data-Driven Modeling.” Journal of Hydroinformatics 11 (1): 1–17. doi:10.2166/hydro.2009.008.
  • Vapnik, V. 1995. The Nature of Statistical Learning Theory. New-York: Springer-Verlag.
  • Vapnik, V. 1998a. Statistical Learning Theory. New-York: John Wiley.
  • Vapnik, V. 1998b. “The Support Vector Method of Function Estimation.“ In Suykens, Johan A.K, Vandewalle, Joos P.L. Nonlinear Modeling: Advanced black-box Techniques, 55–85. Boston: Kluwer Academic Publishers.
  • Wilson, D., Y. Filion, and I. Moore. 2015. “State-of-the-art Review of Water Pipe Failure Prediction Models and Applicability to large-diameter Mains.” Urban Water Journal 14 (2): 173–184. doi:10.1080/1573062X.2015.1080848.
  • Zhang, Youshan, and Qi Li. 2019. “A Regressive Convolution Neural Network and Support Vector Regression Model for Electricity Consumption Forecasting.” In Future of Information and Communication Conference. Springer, Cham.
  • Zhou, Xiao, Z. Tang, W. Xu, F. Meng, X. Chu, K. Xin, G. Fu, et al. 2019. “Deep Learning Identifies Accurate Burst Locations in Water Distribution Networks”. Water Research 166: 115058. doi:10.1016/j.watres.2019.115058.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.