Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 11, 2015 - Issue 7
456
Views
22
CrossRef citations to date
0
Altmetric
Articles

Integrating embedded piezoelectric sensors with continuous wavelet transforms for real-time concrete curing strength monitoring

, , &
Pages 897-903 | Received 12 Jul 2013, Accepted 22 Feb 2014, Published online: 18 Jun 2014

References

  • GiurgiutiuV., ZagraiA.N., & BaoJ.J. (2002). Piezoelectric wafer embedded active sensors for aging aircraft structural health monitoring. Structural Health Monitoring, 1, 41–61. doi:10.1177/147592170200100104.
  • GuH., SongG., DhondeH., MoY.L., & YanS. (2006). Concrete early-age strength monitoring using embedded piezoelectric transducers. Smart Materials and Structures, 15, 1837–1845. doi:10.1088/0964-1726/15/6/038.
  • IrieH., YoshidaY., SakuradaY., & ItoT. (2008). Non-destructive-testing methods for concrete structures. NTT Technical Review, 6, 1–8. Retrieved from https://www.ntt-review.jp/archive/ntttechnical.php?contents = ntr200805le3.html.
  • KimJ.-W., LeeC., & ParkS. (2011). Real-time health monitoring of pipeline structures using piezoelectric guided wave propagation. Advanced Science Letters, 4, 1–6. doi:10.1166/asl.2011.1674.
  • KimJ.-W., LeeC., & ParkS. (2012). Damage localization for CFRP-debonding defects using piezoelectric SHM techniques. Research in Nondestructive Evaluation, 24, 183–196. doi:10.1080/09349847.2012.660244.
  • KimD., ParkS., HongS.I., & LeeC. (2012). Pitch-catch guided waves-based concrete strength monitoring using an embedded smart sensor module. Advanced Science Letters, 14, 274–277. doi:10.1166/asl.2012.4098.
  • KosmatkaS.H., KerkhoffB., & PanareseW.C. (2002). Design and control of concrete mixtures. Portland Cement Association: Skokie, IL.
  • LamondJ.F., & PielertJ.H. (2006). Significance of tests and properties of concrete and concrete-making materials. West Conshohocken: ASTM International.
  • LeeC., & ParkS. (2011). Damage classification of pipelines under water flow operation using multi-mode actuated sensing technology. Smart Materials and Structures, 20, 115002. doi:10.1088/0964-1726/20/11/115002.
  • LemistreM., & BalageasD. (2001). Structural health monitoring system based on diffracted Lamb wave analysis by multiresolution processing. Smart Materials and Structures, 10, 504–511. doi:10.1088/0964-1726/10/3/312.
  • MehtaP.K., & MonterioP.J.M. (2006). Concrete: microstructure, properties, and materials. New York, NY: Mc Graw Hill.
  • NevilleA.M. (1996). Properties of concrete. New York: John Wiley & Sons.
  • ParkS., AntonS.R., KimJ.-K., InmanD.J., & HaD.S. (2010). Instantaneous baseline structural damage detection using a miniaturized piezoelectric guided waves system. KSCE Journal of Civil Engineering, 14, 889–895. doi:10.1007/s12205-011-1137-5.
  • ParkH.W., SohnH., LawK.H., & FarrarC.R. (2007). Time reversal active sensing for health monitoring of a composite plate. Sound and Vibration, 302, 50–66. doi:10.1016/j.jsv.2006.10.044.
  • PessikiS.P., & CarinoN.J. (1988). Setting time and strength of concrete using the impact-echo method. ACI Materials Journal, 85, 389–399. Retrieved from doi:10.14359/2312.
  • PopovicsJ.S., SongW., AchenbachJ.D., LeeJ.H., & AndreR.F. (1998). One-sided stress wave velocity measurement in concrete. ASCE Journal of Engineering Mechanics, 124, 1346–1353. doi:10.1061/(ASCE)0733-9399(1998)124:12(1346).
  • RaghavanA., & CesnikC.E.S. (2007). Review of guided-wave structural health monitoring. The Shock and Vibration Digest, 39, 91–114. doi:10.1177/0583102406075428.
  • RoseJ.L. (1999). In ultrasonic waves in solid media. Cambridge: Cambridge University Press.
  • RoseJ.L. (2004). Ultrasonic guided waves in structural health monitoring. Key Engineering Materials, 270–273, 14–21. doi:10.4028/www.scientific.net/KEM.270-273.14.
  • ShinS.W., QureshiA.R., LeeJ.Y., & YunC.B. (2008). Piezoelectric sensor based nondestructive active monitoring of strength gain in concrete. Smart Materials and Structures, 17, 055002. doi:10.1088/0964-1726/17/5/055002.
  • ShinS.W., YunC.B., PopovicsJ.S., & KimJ.H. (2007). Improved Rayleigh wave velocity measurement for nondestructive early-age concrete monitoring. Research in Nondestructive Evaluation, 18, 45–68. doi:10.1080/09349840601128762.
  • TawieR., LeeH.K., & ParkS. (2010). Non-destructive evaluation of concrete quality using PZT transducers. Smart Structures and Systems, 6, 851–866. doi:10.12989/sss.2010.6.7.851.
  • TharmaratnamK., & TanB.S. (1990). Attenuation of ultrasonic pulse in cement mortar. Cement and Concrete Research, 20, 335–345. doi:10.1016/0008-8846(90)90022-P.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.