Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 13, 2017 - Issue 10
252
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Gaussian descriptions of corrosion initiation in steel bars of fly ash concrete elements

ORCID Icon
Pages 1308-1326 | Received 05 Jun 2016, Accepted 11 Oct 2016, Published online: 23 Dec 2016

References

  • Akiyama, M., Frangopol, D. M., & Suzuki, M. (2012). Integration of the effects of airborne chlorides into reliability-based durability design of reinforced concrete structures in a marine environment. Structure and Infrastructure Engineering, 8, 125–134. doi:10.1080/15732470903363313
  • Andrade, C., Garcés, P., & Martínez, I. (2008). Galvanic currents and corrosion rates of reinforcements measured in cells simulating different pitting areas caused by chloride attack in sodium hydroxide. Corrosion Science, 50, 2959–2964. doi:10.1016/j.corsci.2008.07.013
  • Bažant, Z. P., & Najjar, L. J. (1972). Nonlinear water diffusion in nonsaturated concrete. Matériaux et Constructions, 5, 3–20.10.1007/BF02479073
  • Bertolini, L. (2008). Steel corrosion and service life of reinforced concrete structures. Structure and Infrastructure Engineering, 4, 123–137. doi:10.1080/15732470601155490
  • Bhargava, K., Mori, Y., & Ghosh, A. K. (2011). Time-dependent reliability of corrosion-affected RC beams – Part 1: Estimation of time-dependent strengths and associated variability. Nuclear Engineering and Design, 241, 1371–1384. doi:10.1016/j.nucengdes.2011.01.005
  • Byfors, K. (1987). Influence of silica fume and flyash on chloride diffusion and pH values in cement paste. Cement and Concrete Research, 17, 115–130. doi:10.1016/0008-8846(87)90066-4
  • Cao, C., & Cheung, M. M. S. (2014). Non-uniform rust expansion for chloride-induced pitting corrosion in RC structures. Construction and Building Materials, 51, 75–81. doi:10.1016/j.conbuildmat.2013.10.042
  • Chalee, W., Jaturapitakkul, C., & Chindaprasirt, P. (2009). Predicting the chloride penetration of fly ash concrete in seawater. Marine Structures, 22, 341–353. doi:10.1016/j.marstruc.2008.12.001
  • Coronelli, D., & Gambarova, P. (2004). Structural assessment of corroded reinforced concrete beams: Modeling guidelines. Journal of Structural Engineering, 130, 1214–1224. doi:10.1061/(Asce)0733-9445(2004)130:8(1214)
  • Elkey, W., & Sellevold, E. (1995). Electrical resistivity of concrete. In K. Tuutti (Eds.), Corrosion of reinforcement: Field and laboratory studies for modelling and service life (pp. 303–334). Report TVBM-3064. Lund: University of Lund.
  • Gjørv, O. E. (2009). Durability design of concrete structures in severe environments. London: E&FN Spon Press.
  • Hansen, E. J., & Saouma, V. E. (1999). Numerical simulation of reinforced concrete deterioration: Part ii – steel corrosion and concrete cracking. ACI Materials Journal, 96, 331–338.
  • Higgins, C., Farrow, W. C., & Turan, O. T. (2012). Analysis of reinforced concrete beams with corrosion damaged stirrups for shear capacity. Structure and Infrastructure Engineering, 8, 1080–1092. doi:10.1080/15732479.2010.504213
  • Japan Meteorological Agency. (2016). Retrieved from http://www.data.jma.go.jp/obd/stats/data/en/normal/normal.html
  • Japan Society of Civil Engineers. (2007). Standard specification for concrete structures (maintenance). Tokyo: Maruzen.
  • Juarez, C. A., Guevara, B., Fajardo, G., & Castro-Borges, P. (2011). Ultimate and nominal shear strength in reinforced concrete beams deteriorated by corrosion. Engineering Structures, 33, 3189–3196. doi:10.1016/j.engstruct.2011.08.014
  • Kawamura, M., Kayyali, O. A., & Haque, M. N. (1988). Effects of a flyash on pore solution composition in calcium and sodium chloride-bearing mortars. Cement and Concrete Research, 18, 763–773. doi:10.1016/0008-8846(88)90101-9
  • Kim, C. Y., & Kim, J. K. (2008). Numerical analysis of localized steel corrosion in concrete. Construction and Building Materials, 22, 1129–1136. doi:10.1016/j.conbuildmat.2007.02.007
  • Liu, Y. D., & Li, Y. H. (2004). Mechanistic model and numerical analysis for corrosion damage of reinforced concrete structure. International Journal of Fracture, 126, 71–78. doi:10.1023/B:frac.0000025297.39653.59
  • Martı́n-Pérez, B., Pantazopoulou, S. J., & Thomas, M. D. A. (2001). Numerical solution of mass transport equations in concrete structures. Computers & Structures, 79, 1251–1264. doi:10.1016/S0045-7949(01)00018-9
  • Muthulingam, S., & Rao, B. N. (2014). Non-uniform time-to-corrosion initiation in steel reinforced concrete under chloride environment. Corrosion Science, 82, 304–315. doi:10.1016/j.corsci.2014.01.023
  • Muthulingam, S., & Rao, B. N. (2015a). Non-uniform corrosion states of rebar in concrete under chloride environment. Corrosion Science, 93, 267–282. doi:10.1016/j.corsci.2015.01.031
  • Muthulingam, S., & Rao, B. N. (2015b). Consistent models for estimating chloride ingress parameters in fly ash concrete. Journal of Building Engineering, 3, 24–38. doi:10.1016/j.jobe.2015.04.009
  • Oh, B. H., & Jang, B. S. (2003). Chloride diffusion analysis of concrete structures considering effects of reinforcements. ACI Materials Journal, 100, 143–149.
  • Okasha, N. M., & Frangopol, D. M. (2010). Novel approach for multicriteria optimization of life-cycle preventive and essential maintenance of deteriorating structures. Journal of Structural Engineering, 136, 1009–1022. doi:10.1061/(Asce)St.1943-541x.0000198
  • Otieno, M., Beushausen, H., & Alexander, M. (2014). Effect of chemical composition of slag on chloride penetration resistance of concrete. Cement and Concrete Composites, 46, 56–64. doi:10.1016/j.cemconcomp.2013.11.003
  • Otieno, M. B., Alexander, M. G., & Beushausen, H. D. (2010). Corrosion in cracked and uncracked concrete – Influence of crack width, concrete quality and crack reopening. Magazine of Concrete Research, 62, 393–404. doi:10.1680/macr.2010.62.6.393
  • Petcherdchoo, A. (2015). Repairs by fly ash concrete to extend service life of chloride-exposed concrete structures considering environmental impacts. Construction and Building Materials, 98, 799–809. doi:10.1016/j.conbuildmat.2015.08.120
  • Saetta, A. V., Scotta, R. V., & Vitaliani, R. V. (1993). Analysis of chloride diffusion into partially saturated concrete. ACI Structural Journal, 90, 441–451.
  • Shafei, B., & Alipour, A. (2015). Application of large-scale non-Gaussian stochastic fields for the study of corrosion-induced structural deterioration. Engineering Structures, 88, 262–276. doi:10.1016/j.engstruct.2014.12.024
  • Siddique, R., & Khan, M. I. (2011). Supplementary cementing materials. Berlin: Springer.10.1007/978-3-642-17866-5
  • Tang, L. P., & Nilsson, L. O. (1993). Chloride binding-capacity and binding isotherms of OPC pastes and mortars. Cement and Concrete Research, 23, 247–253. doi:10.1016/0008-8846(93)90089-R
  • Thomas, M. (1996). Chloride thresholds in marine concrete. Cement and Concrete Research, 26, 513–519. doi:10.1016/0008-8846(96)00035-X
  • Thomas, M. D. A., & Matthews, J. D. (2004). Performance of PFA concrete in a marine environment – 10-year results. Cement and Concrete Composites, 26, 5–20. doi:10.1016/s0958-9465(02)00117-8
  • Titi, A., & Biondini, F. (2015). On the accuracy of diffusion models for life-cycle assessment of concrete structures. Structure and Infrastructure Engineering, 12, 1202–1215. doi:10.1080/15732479.2015.1099110
  • Tuutti, K. (1982). Corrosion of steel in concrete (CBI Research Report No. 4.82). Stockholm, Sweden: Swedish Cement.
  • Val, D. V., & Trapper, P. A. (2008). Probabilistic evaluation of initiation time of chloride-induced corrosion. Reliability Engineering & System Safety, 93, 364–372. doi:10.1016/j.ress.2006.12.010
  • Williamson, S. J., & Clark, L. A. (2000). Pressure required to cause cover cracking of concrete due to reinforcement corrosion. Magazine of Concrete Research, 52, 455–467. doi:10.1680/macr.2000.52.6.455
  • Xi, Y. P., Bažant, Z. P., Molina, L., & Jennings, H. M. (1994). Moisture diffusion in cementitious materials – Moisture capacity and diffusivity. Advanced Cement Based Materials, 1, 258–266. doi:10.1016/1065-7355(94)90034-5
  • Xia, N., Ren, Q. W., Liang, R. Y., Payer, J., & Patnaik, A. (2012). Nonuniform corrosion-induced stresses in steel-reinforced concrete. Journal of Engineering Mechanics, 138, 338–346. doi:10.1061/(Asce)Em.1943-7889.0000337
  • Yu, L., François, R., Dang, V. H., & L’hostis, V., & Gagné, R. (2015). Distribution of corrosion and pitting factor of steel in corroded RC beams. Construction and Building Materials, 95, 384–392. doi:10.1016/j.conbuildmat.2015.07.119
  • Yuan, Y. S., & Ji, Y. S. (2009). Modeling corroded section configuration of steel bar in concrete structure. Construction and Building Materials, 23, 2461–2466. doi:10.1016/j.conbuildmat.2008.09.026
  • Zhao, Y., Hu, B., Yu, J., & Jin, W. (2011). Non-uniform distribution of rust layer around steel bar in concrete. Corrosion Science, 53, 4300–4308. doi:10.1016/j.corsci.2011.08.045

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.