Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 14, 2018 - Issue 2
413
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Time-dependent seismic fragility curves for aging jacket-type offshore platforms subjected to earthquake ground motions

&
Pages 192-202 | Received 30 Oct 2016, Accepted 29 May 2017, Published online: 28 Jun 2017

References

  • Ajamy, A., Zolfaghari, M. R., Asgarian, B., & Ventura, C.E. (2014). Probabilistic seismic analysis of offshore platforms incorporating uncertainty in soil-pile-structure interactions. Journal of Constructional Steel Research, 101, 265–279. doi:10.1016/j.jcsr.2014.05.024
  • API. (2007). Recommended practice for planning, designing and constructing fixed offshore platforms – Working stress design, Api RP 2A-WSD, American Petroleum Institute.
  • Asgarian, B., & Ajamy, A. (2010). Seismic performance of jacket type offshore platforms through incremental dynamic analysis. Journal of Offshore Mechanics and Arctic Engineering, 132, 031301. doi:10.1115/1.4000395
  • Asgarian, B., & Shokrgozar, H.R. (2013). A new bracing system for improvement of seismic performance of steel jacket type offshore platforms with float-over-deck. Petroleum Science, 10, 373–384. doi:10.1007/s12182-013-0285-2
  • Banihashemi, M.R., Mirzagoltabar, A.R., & Tavakoli, H.R. (2015). Reliability and fragility curve assessment of steel concentrically braced frames. European Journal of Environmental and Civil Engineering, 1–23, doi:10.1080/19648189.2015.1064481
  • Berger, E., Mahi, S.A., & Pyke, R. (1977). Simplified method for evaluating soil-pile-structure interaction effects. In Offshore Technology Conference, 239–257. doi:10.4043/2954-MS.
  • Bhandari, J., Khan, F., Abbassi, R., Garaniya, V., & Ojeda, R. (2015). Modelling of pitting corrosion in marine and offshore steel structures – A technical review. Journal of Loss Prevention in the Process Industries, 37, 39–62. doi:10.1016/j.jlp.2015.06.008
  • Billah, A.H.M.M., Alam, M.S., & Bhuiyan, M.A.R. (2013). Fragility analysis of retrofitted multicolumn bridge bent subjected to near-fault and far-field ground motion. ASCE Journal of Bridge Engineering, 18, 992–1004. doi:10.1061/(ASCE)BE.1943-5592.0000452
  • Boulanger, R.W., Curras, C.J., Kutter, B.L., Wilson, D.W., & Abghari, A. (1999). Seismic soil-pile-structure interaction experiments and analyses. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 125, 750–759. doi:10.1061/(ASCE)1090-0241(1999)125:9(750)
  • Boulanger, R.W., Kutter, B.L., Brandenberg, S.J., Singh, P., & Chang, D. (2003). Pile foundations in liquefied and laterally spreading ground during earthquakes: Centrifuge experiments & analyses (Report No. UCD/CGM-03/01). Davis, California: Center for Geotechnical Modeling, University of California at Davis, CA.
  • Celarec, D., Vamvatsikos, D., & Dolšek, M. (2011). Simplified estimation of seismic risk for reinforced concrete buildings with consideration of corrosion over time. Bulletin of Earthquake Engineering, 9, 1137–1155. doi:10.1007/s10518-010-9241-3
  • Dong, W., Moan, T., & Gao, Z. (2012). Fatigue reliability analysis of the jacket support structure for offshore wind turbine considering the effect of corrosion and inspection. Reliability Engineering & System Safety, 106, 11–27. doi:10.1016/j.ress.2012.06.011
  • Enright, M.P., & Frangopol, D.M. (1999). Condition prediction of deteriorating concrete bridges using Bayesian updating. Journal of Structural Engineering, 125, 1118–1125. doi:10.1061/(ASCE)0733-9445(1999)125:10(1118)
  • Erberik, M.A. (2008). Fragility-based assessment of typical mid-rise and low-rise RC buildings in Turkey. Engineering Structures, 30, 1360–1374. doi:10.1016/j.engstruct.2007.07.016
  • FEMA 350. (2000). Recommended seismic design criteria for new steel moment-frame buildings, Washington, DC: Federal Emergency Management Agency.
  • FEMA P695. (2009). Quantification of building seismic performance factors. Washington, DC: Federal Emergency Management Agency.
  • Ghobarah, A., Abou-Elfath, H., & Biddah, A. (1999). Response-based damage assessment of structures. Earthquake Engineering & Structural Dynamics, 28, 79–104. doi:10.1002/(SICI)1096-9845(199901)28:1<79::AID-EQE805>3.0.CO;2-J
  • Ghosh, J., & Padgett, J.E. (2010). Aging considerations in the development of time-dependent seismic fragility curves. Journal of Structural Engineering, 136, 1497–1511. doi:10.1061/(ASCE)ST.1943-541X.0000260
  • Giovenale, P., Cornell, C.A., & Esteva, L. (2004). Comparing the adequacy of alternative ground motion intensity measures for the estimation of structural responses. Earthquake Engineering & Structural Dynamics, 33, 951–979. doi:10.1002/eqe.386
  • Heidary-Torkamani, H., Bargi, K., & Amirabadi, R. (2014). Seismic vulnerability assessment of pile-supported wharves using fragility curves. Structure and Infrastructure Engineering, 10, 1417–1431. doi:10.1080/15732479.2013.823453
  • Heidary-Torkamani, H., Bargi, K., Amirabadi, R., & McCllough, N.J. (2014). Fragility estimation and sensitivity analysis of an idealized pile-supported wharf with batter piles. Soil Dynamics and Earthquake Engineering, 61, 92–106. doi:10.1016/j.soildyn.2014.01.024
  • Ibarra, L.F., & Krawinkler, H. (2005). Global collapse of frame structures under seismic excitations. The John A. Blume Earthquake Engineering Center (Report No. 152); Stanford University, Stanford, CA, USA.
  • Iervolino, I., Giorgio, M., & Chioccarelli, E. (2013). Gamma degradation models for earthquake-resistant structures. Structural Safety, 45, 48–58. doi:10.1016/j.strusafe.09.001
  • International Standards Organization, ISO19902. (2007). Petroleum and natural gas industries. Geneva, Switzerland: Fixed Steel Offshore Structures.
  • Lignos, D.G., & Karamanci, E. (2013). Drift-based and dual-parameter fragility curves for concentrically braced frames in seismic regions. Journal of Constructional Steel Research, 90, 209–220. doi:10.1016/j.jcsr.2013.07.034
  • Mackie, K.R., & Stojadinovic, B. (2004). Fragility curves for reinforced concrete highway overpass bridges, In 13th World Conference of Earthquake Engineering, Paper No. 1553, pp. (1–6).
  • Matlock, H. (1970). Correlation for design of laterally loaded piles in soft clay. In Offshore Technology Conference, 577–594. doi:10.4043/1204-MS
  • Mazzoni, S., McKenna, F., Scott, M.H., & Fenves, G.L. (2006). OpenSees command language manual. California, CA: Pacific Earthquake Engineering Research Center.
  • Melchers, R.E. (1998). Probabilistic modelling of immersion marine corrosion, structural safety and reliability, (Vol. 3).Rotterdam: Balkema. (pp. 1143–1149).
  • Melchers, R.E. (1999). Structural reliability analysis and prediction (2nd ed.). New York, NY: Wiley.
  • Melchers, R.E. (2003). Modeling of marine immersion corrosion for mild and low-alloy steels? Part 1: Phenomenological model. Corrosion Science, 59, 319–334. doi:10.5006/1.3277564
  • Melchers, R.E. (2005). The effect of corrosion on the structural reliability of steel offshore structures. Corrosion Science, 2391–2410. doi:10.1016/j.corsci.2005.04.004
  • Melchers, R.E. (2008). Corrosion wastage in aged structures. Condition assessment of aged structures, 77–106. doi:10.1533/9781845695217.2.77
  • Moan, T. (2005). Reliability-based management of inspection, maintenance and repair of offshore structures. Structure and Infrastructure Engineering, 1, 33–62. doi:10.1080/15732470412331289314
  • NACE Standard RP0176. (2003). Standard recommended practice: Corrosion control of steel fixed offshore structures associated with petroleum production ( Item No. 21018).
  • Nielson, B.G., & DesRoches, R. (2007). Seismic fragility methodology for highway bridges using a component level approach. Earthquake Engineering & Structural Dynamics, 36, 823–839. doi:10.1002/eqe.655
  • PEER. (2006). PEER NGA Database. Pacific earthquake engineering research center University of California Berkeley, CA. Retrieved from http://peer.berkeley.edu/nga/
  • Ricles, J. M., Bruin, W.M., Sooi, T.K., Hebor, M.F., & Schonwetter, P.C. (1995). Residual strength assessment and repair of damaged offshore tubular. In Offshore Technology Conference, Houston, Texas, USA, pp. 2–15. doi:10.4043/7807-MS
  • Rota, M., Penna, A., & Magenes, G. (2010). A methodology for deriving analytical fragility curves for masonry buildings based on stochastic nonlinear analyses. Engineering Structures, 32, 1312–1323. doi:10.1016/j.engstruct.2010.01.009
  • Sharifian, H., Bargi, K., & Zarrin, M. (2015). Ultimate strength of fixed offshore platforms subjected to near-fault earthquake ground vibration, Shock and Vibration, 2015, 1–19. doi:10.1155/2015/841870
  • Shome, N., & Cornell, C.A. (1999). Probabilistic seismic demand analysis of non-linear structures (Report No. RMS-35). Stanford University, CA: RMS Program.
  • Soares, G., & Garbatov, Y. (1999). Reliability of maintained, corrosion protected plates subjected to nonlinear corrosion and compressive loads. Marine Structures, 12, 425–445. doi:10.1016/S0951-8339(99)00028-3
  • Southwell, C.R., Bultman, J.D., & Hummer, J.C. (1979). Estimating of service life of steel in seawater, Seawater corrosion handbook (pp. 374–387). New Jersey: Noyes Data Corporation.
  • Torres, M.A., & Ruiz, S.E. (2007). Structural reliability evaluation considering capacity degradation over time. Engineering Structures, 29, 2183–2192. doi:10.1016/j.engstruct.11.014
  • TSCF. (1997). Guidance manual for tankers structures. London: Tanker Structure Cooperative Forum and IACS, Whitherby.
  • Vamvatsikos, D., & Allin Cornell, C. (2002). Incremental dynamic analysis. Earthquake Engineering & Structural Dynamics, 31, 491–514. doi:10.1002/eqe.141
  • Vamvatsikos, D., & Dolšek, M. (2011). Equivalent constant rates for performance-based seismic assessment of ageing structures. Structural Safety, 33, 8–18. doi:10.1016/j.strusafe.2010.04.005
  • Yamamoto, N., & Lkegami, K. (1998). A study on the degradation of coating and corrosion of ship’s hull based on the probabilistic approach. Journal of Offshore Mechanics and Arctic Engineering, 120, 121–128.10.1115/1.2829532

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.