Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 14, 2018 - Issue 3
463
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Probabilistic service life of reinforced concrete structures with randomly distributed corrosion-induced cracks

&
Pages 333-347 | Received 12 Jan 2017, Accepted 28 Apr 2017, Published online: 26 Jul 2017

References

  • Ahmad, S. (2003). Reinforcement corrosion in concrete structures, its monitoring and service life prediction – a review. Cement and Concrete Composites, 25, 459–471.10.1016/S0958-9465(02)00086-0
  • Andrade, C., Alonso, C., & Molina, F. J. (1993). Cover cracking as a function of bar corrosion: Part I-experimental test. Materials and Structures, 26, 453–464.10.1007/BF02472805
  • Bazant, Z. P. (1979). Physical model for steel corrosion in concrete sea structures – application. ASCE Journal of the Structural Division, 105, 1155–1166.
  • Bhargava, K., Ghosh, A. K., Mori, Y., & Ramanujam, S. (2006). Model for cover cracking due to rebar corrosion in RC structures. Engineering Structures, 28, 1093–1109.10.1016/j.engstruct.2005.11.014
  • Capra, B., Le Drogo, J., & Wolff, V. (2006). Reinforced concrete corrosion: Application of Bayesian networks to the risk management of a cooling tower. Journal de Physique IV (Proceedings), 136, 213–222.10.1051/jp4:2006136022
  • Defaux, G., Pendola, M., & Sudret, B. (2006). Using spatial reliability in the probabilistic study of concrete structures: The example of a reinforced concrete beam subjected to carbonatation inducing corrosion. Journal de Physique IV (Proceedings), 136, 243–253.10.1051/jp4:2006136025
  • Duprat, F., & Sellier, A. (2006). Probabilistic approach to corrosion risk due to carbonation via an adaptive response surface method. Probabilistic Engineering Mechanics, 21, 207–216.10.1016/j.probengmech.2005.11.001
  • Firouzi, A., & Rahai, A. R. (2011). Prediction of extent and liklihood of corrosion-induced cracking in reinforced concrete bridge decks. International Journal of Civil Engineering, 9, 183–192.
  • Grigoriu, M. (2006). Evaluation of karhunen–loève, spectral, and sampling representations for stochastic processes. Journal of Engineering Mechanics, 132, 179–189.10.1061/(ASCE)0733-9399(2006)132:2(179)
  • Keßler, S., Fischer, J., Straub, D., & Gehlen, C. (2014). Updating of service-life prediction of reinforced concrete structures with potential mapping. Cement & Concrete Composites, 47, 47–52.10.1016/j.cemconcomp.2013.09.018
  • Kong, J. S., Ababneh, A. N., Frangopol, D. M., & Xi, Y. P. (2002). Reliability analysis of chloride penetration in saturated concrete. Probabilistic Engineering Mechanics, 17, 305–315.10.1016/S0266-8920(02)00014-0
  • Kwon, S. J., Na, U. J., Park, S. S., & Jung, S. H. (2009). Service life prediction of concrete wharves with early-aged crack: Probabilistic approach for chloride diffusion. Structural Safety, 31, 75–83.10.1016/j.strusafe.2008.03.004
  • Y. Li, 2004. Effect of spatial variability on maintenance and repair decisions for concrete structures (Ph.D. thesis). Technische Universiteit Delft, The Netherlands.
  • Li, Y., Vrouwenvelder, T., Wijnants, G. H., & Walraven, J. (2004). Spatial variability of concrete deterioration and repair strategies. Structural Concrete, 5, 121–129.10.1680/stco.2004.5.3.121
  • Li, C. Q., Melchers, R. E., & Zheng, J. J. (2006). Analytical model for corrosion-induced crack width in reinforced concrete structures. ACI Structural Journal, 103, 479–487.
  • Life-365. 2008. Life-365 service life prediction model and computer program for predicting the service life and life-cycle cost of reinforced concrete exposed to chlorides. Version 2 Users Manual, National Ready Mixed Concrete Association, Silver Spring, MD. Retrieved from https://www.nrmca.org/research/Life365v2UsersManual.pdf
  • Lim, S., Akiyama, M., & Frangopol, D. M. (2016). Assessment of the structural performance of corrosion-affected RC members based on experimental study and probabilistic modeling. Engineering Structures, 127, 189–205.10.1016/j.engstruct.2016.08.040
  • Liu, Y. P., 1996. Modeling the time-to-corrosion cracking of the cover concrete in chloride contaminated reinforced concrete structures (Ph.D. thesis). Virginia Polytechnic Institute and State University.
  • Liu, T., & Weyers, R. E. (1998a). Modeling the dynamic corrosion process in chloride contaminated concrete structures. Cement and Concrete Research, 28, 365–379.10.1016/S0008-8846(98)00259-2
  • Liu, Y., & Weyers, R. E. (1998b). Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures. ACI Materials Journal, 95, 675–681.
  • Malumbela, G., Alexander, M., & Moyo, P. (2009). Steel corrosion on RC structures under sustained service loads – A critical review. Engineering Structures, 31, 2518–2525.10.1016/j.engstruct.2009.07.016
  • Molina, F. J., Alonso, C., & Andrade, C. (1993). Cover cracking as a function of rebar corrosion: Part 2—Numerical model. Materials and Structures, 26, 532–548.10.1007/BF02472864
  • Na, U. J., Kwon, S. J., Chaudhuri, S. R., & Shinozuka, M. (2012). Stochastic model for service life prediction of RC structures exposed to carbonation using random field simulation. KSCE Journal of Civil Engineering, 16, 133–143.10.1007/s12205-012-1248-7
  • Otieno, M., Beushausen, H., & Alexander, M. (2011). Prediction of corrosion rate in RC structures – A critical review. Modelling of Corroding Concrete Structures, 5, 15–37.10.1007/978-94-007-0677-4
  • Pan, T. Y., & Lu, Y. (2012). Stochastic modeling of reinforced concrete cracking due to nonuniform corrosion: FEM-based cross-scale analysis. Journal of Materials in Civil Engineering, 24, 698–706.10.1061/(ASCE)MT.1943-5533.0000427
  • Pantazopoulou, S. J., & Papoulia, K. D. (2001). Modeling cover-cracking due to reinforcement corrosion in RC structures. Journal of Engineering Mechanics, 127, 342–351.10.1061/(ASCE)0733-9399(2001)127:4(342)
  • Papakonstantinou, K. G., & Shinozuka, M. (2013a). Probabilistic model for steel corrosion in reinforced concrete structures of large dimensions considering crack effects. Engineering Structures, 57, 306–326.10.1016/j.engstruct.2013.06.038
  • Papakonstantinou, K. G., & Shinozuka, M. (2013b). Spatial stochastic direct and inverse analysis for the extent of damage in deteriorated RC structures. Computers & Structures, 128, 286–296.10.1016/j.compstruc.2013.08.004
  • Phoon, K. K., Huang, H. W., & Quek, S. T. (2005). Simulation of strongly non-Gaussian processes using Karhunen-Loeve expansion. Probabilistic Engineering Mechanics, 20, 188–198.10.1016/j.probengmech.2005.05.007
  • Shafei, B., & Alipour, A. (2015). Application of large-scale non-Gaussian stochastic fields for the study of corrosion-induced structural deterioration. Engineering Structures, 88, 262–276.10.1016/j.engstruct.2014.12.024
  • Shang, S., & Yun, G. J. (2013). Stochastic finite element with material uncertainties: Implementation in a general-purpose simulation program. Finite Elements in Analysis and Design, 64, 65–78.10.1016/j.finel.2012.10.001
  • Shinozuka, M., & Deodatis, G. (1991). Simulation of stochastic processes by spectral representation. Applied Mechanics Reviews, 44, 191–204.10.1115/1.3119501
  • Shinozuka, M., & Deodatis, G. (1996). Simulation of multi-dimensional Gaussian stochastic fields by spectral representation. Applied Mechanics Reviews, 49, 29–53.10.1115/1.3101883
  • Stefanou, G., & Papadrakakis, M. (2007). Assessment of spectral representation and Karhunen–Loève expansion methods for the simulation of Gaussian stochastic fields. Computer Methods in Applied Mechanics and Engineering, 196, 2465–2477.10.1016/j.cma.2007.01.009
  • Stewart, M. G. (2004). Spatial variability of pitting corrosion and its influence on structural fragility and reliability of RC beams in flexure. Structural Safety, 26, 453–470.10.1016/j.strusafe.2004.03.002
  • Stewart, M. G., & Mullard, J. A. (2007). Spatial time-dependent reliability analysis of corrosion damage and the timing of first repair for RC structures. Engineering Structures, 29, 1457–1464.10.1016/j.engstruct.2006.09.004
  • Stewart, M. G., & Rosowsky, D. V. (1998). Time-dependent reliability of deteriorating reinforced concrete bridge decks. Structural Safety, 20, 91–109.10.1016/S0167-4730(97)00021-0
  • Straub, D. (2011). Reliability updating with inspection and monitoring data in deteriorating reinforced concrete slabs. In K. Nishijima (Ed.), Applications of statistics and probability in civil engineering (pp. 2309–2316). CRC Press.10.1201/b11332
  • Sudret, B., & Der Kiureghian, A. 2000. Stochastic finite element methods and reliability. A state-of-the-art-report (Technical Report UCB/SEMM-2000/08). Berkeley, CA: University of California.
  • Thanapol, Y., Akiyama, M., & Frangopol, D. M. (2016). Updating the seismic reliability of existing RC structures in a marine environment by incorporating the spatial steel corrosion distribution: Application to bridge piers. Journal of Bridge Engineering, 21, 04016031. doi:10.1061/(ASCE)BE.1943-5592.0000889
  • Val, D. V., Stewart, M. G., & Melchers, R. E. (1998). Effect of reinforcement corrosion on reliability of highway bridges. Engineering Structures, 20, 1010–1019.10.1016/S0141-0296(97)00197-1
  • Vidal, T., Castel, A., & François, R. (2004). Analyzing crack width to predict corrosion in reinforced concrete. Cement and Concrete Research, 34, 165–174.10.1016/S0008-8846(03)00246-1
  • Vu, K. T., & Stewart, M. G. (2005). Predicting the likelihood and extent of reinforced concrete corrosion-induced cracking. Journal of Structural Engineering, 131, 1681–1689.10.1061/(ASCE)0733-9445(2005)131:11(1681)
  • Vu, K., Stewart, M. G., & Mullard, J. (2005). Corrosion-induced cracking: Experimental data and predictive models. ACI Structural Journal, 102, 719–726.
  • Yun, G. J., Zhao, L., & Iarve, E. (2015). Probabilistic mesh-independent discrete damage analyses of laminate composites. Composite Structures, 133, 22–30.10.1016/j.compstruct.2015.07.083

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.