Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 14, 2018 - Issue 3
1,591
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Towards standardisation of proof load testing: pilot test on viaduct Zijlweg

ORCID Icon, , &
Pages 365-380 | Received 19 Nov 2016, Accepted 23 Apr 2017, Published online: 26 Jul 2017

References

  • AASHTO. (2011). The manual for bridge evaluation. (2nd ed.). Washington, DC: American Association for State Highway and Transportation Officials.
  • ACI Committee 437. (2013). Code requirements for load testing of existing concrete structures (ACI 437.2M-13) and commentary (p. 24). Farmington Hills, MA: American Concrete Institute.
  • Ahmed, T., Burley, E., & Rigden, S. (1998). The static and fatigue strength of reinforced concrete beams affected by alkali-silica reaction. ACI Materials Journal, 95, 376–388.
  • Ahmed, T., Burley, E., & Rigden, S. (1999). Effect of alkali-silica reaction on tensile bond strength of reinforcement in concrete tested under static and fatigue loading. ACI Materials Journal, 96, 419–428.
  • Borsje, H., Peelen, W. H. A., Postema, F. J., & Bakker, J. D. (2002). Monitoring alkali-silica reaction in structures. Heron, 47, 96–109.
  • Casas, J. R., & Gómez, J. D. (2013). Load rating of highway bridges by proof-loading. KSCE Journal of Civil Engineering, 17, 556–567.10.1007/s12205-013-0007-8
  • CEN. (2003). Eurocode 1: Actions on structures – Part 2: Traffic loads on bridges, NEN-EN 1991-2:2003 (p. 168). Brussels: European Normalization Institute.
  • CEN. (2005). Eurocode 2: Design of concrete structures – Part 1-1 general rules and rules for buildings. NEN-EN 1992-1-1:2005 (p. 229). Brussels: European Normalization Institute.
  • Code Committee 351001. (2011a). Assessement of structural safety of an existing structure at repair or unfit for use – Basic requirements, NEN 8700:2011. Delft, The Netherlands: Civil Center for the Execution of Research and Standard, Dutch Normalisation Institute (in Dutch).
  • Code Committee 351001. (2011b). Eurocode 1 – Actions on structures – Part 2: Traffic loads on bridges, EN 1991-2/NA:2011 (p. 38). Delft, The Netherlands: Civil Engineering Center for Research and Regulation, Dutch Normalization Institute.
  • Cope, R. J. (1985). Flexural shear failure of reinforced-concrete slab bridges. Proceedings of the Institution of Civil Engineers Part 2-Research and Theory, 79, 559–583.
  • Davids, W. G., Poulin, T. J., & Goslin, K. (2013). Finite-element analysis and load rating of flat slab concrete bridges. Journal of Bridge Engineering, 18, 946–956.10.1061/(ASCE)BE.1943-5592.0000461
  • den Uijl, J. A., & Kaptijn, N. (2002). Structural consequences of ASR: An example on shear capacity. Heron, 47(2), 1–13.
  • Deutscher Ausschuss für Stahlbeton. (2000). DAfStb-guideline: Load tests on concrete structures (p. 7). DAfStB (in German).
  • fib. (2012). Model code 2010: Final draft. Lausanne: International Federation for Structural Concrete.
  • Giaccio, G., Zerbino, R., Ponce, J. M., & Batic, O. R. (2008). Mechanical behavior of concretes damaged by alkali-silica reaction. Cement and Concrete Research, 38, 993–1004. doi:10.1016/j.cemconres.2008.02.009
  • Haddad, R. H., Shannag, M. J., & Al-Hambouth, M. T. (2008). Repair of reinforced concrete beams damaged by alkali-silica reaction. ACI Structural Journal, 105, 145–153.
  • Koekkoek, R., Lantsoght, E., Yang, Y., Boer, A. D., & Hordijk, D. (2016). Defining loading criteria for proof loading of existing reinforced concrete bridges. Paper presented at the fib symposium 2016: Performance-based approaches for concrete structures, Cape Town, South Africa.
  • Koenders Instruments. (2015). Zijlweg monitoring system (p. 4). Alkmaar: Koenders Instruments.
  • Lantsoght, E. O. L., de Boer, A., & van der Veen, C. (2017). Levels of approximation for the shear assessment of reinforced concrete slab bridges. Structural Concrete, 18, 143–152.10.1002/suco.201600012
  • Lantsoght, E. O. L., Van der Veen, C., de Boer, A., & Hordijk, D. A. (2016). Collapse test and moment capacity of the Ruytenschildt reinforced concrete slab bridge. Structure and Infrastructure Engineering, 13, 1130–1145. doi:10.1080/15732479.2016.1244212
  • Lantsoght, E. O. L., de Boer, A., Van der Veen, C., & Walraven, J. C. (2013). Peak shear stress distribution in finite element models of concrete slabs. Paper presented at the Research and Applications in Structural Engineering, Mechanics and Computation, Cape Town, South Africa.
  • Lantsoght, E. O. L., van der Veen, C., de Boer, A., & Alexander, S. D. B. (2017). Extended strip model for slabs under concentrated loads. ACI Structural Journal, 114, 565–574.
  • Lantsoght, E. O. L., van der Veen, C., de Boer, A., & Walraven, J. (2014). Influence of width on shear capacity of reinforced concrete members. ACI Structural Journal, 111, 1441–1450.
  • Lantsoght, E. O. L., van der Veen, C., de Boer, A., & Walraven, J. (2015). One-way slabs subjected to combination of loads failing in shear. ACI Structural Journal, 112, 417–426.
  • Lantsoght, E. O. L., van der Veen, C., Walraven, J., & de Boer, A. (2013). Recommendations for the shear assessment of reinforced concrete slab bridges from experiments. Structural Engineering International, 23, 418–426.10.2749/101686613X13627347100239
  • Lantsoght, E. O. L., van der Veen, C., Walraven, J., & de Boer, A. (2015). Experimental investigation on shear capacity of reinforced concrete slabs with plain bars and slabs on elastomeric bearings. Engineering Structures, 103, 1–14.10.1016/j.engstruct.2015.08.028
  • Lantsoght, E. O. L., van der Veen, C., & Walraven, J. C. (2013). Shear in one-way slabs under a concentrated load close to the support. ACI Structural Journal, 110, 275–284.
  • NCHRP. (1998). Manual for bridge rating through load testing (Vol. NCHRP Project 12-28(13)A, p. 152). Washington, DC: National Cooperative Highway Research Program.
  • Neville, A. (2012). Properties of concrete. (5th ed.). Harlow: Pearson Education.
  • Nijland, T. G., & Siemes, A. J. M. (2002). Alkali-silica reaction in the Netherlands: Experiences and current research. Heron, 47, 81–84.
  • Olaszek, P., Łagoda, M., & Casas, J. R. (2014). Diagnostic load testing and assessment of existing bridges: Examples of application. Structure and Infrastructure Engineering, 10, 834–842.10.1080/15732479.2013.772212
  • Provincie Noord Brabant. (1965). Viaduct Zijlweg (p. 12). ‘s Hertogenbosch, The Netherlands (in Dutch).
  • Rijkswaterstaat (1997). Safety evaluation of existing structures – Reinforced concrete bridges (p. 102). Utrecht: (Ministry of Infrastructure and the Environment in Dutch).
  • Rijkswaterstaat. (2002). Management- and maintenance plan Viaduct Zijlweg of highway A59 (p. 36). Utrecht, The Netherlands (in Dutch).
  • Rijkswaterstaat. (2008). Inspection report of object 44G-113-01 (p. 26). Utrecht, The Netherlands (in Dutch).
  • Rijkswaterstaat. (2012). Guidelines for nonlinear finite element analysis of concrete structures (p. 65). RTD 1016:2012, Utrecht, The Netherlands.
  • Rijkswaterstaat. (2013). Guidelines assessment bridges – Assessment of structural safety of an existing bridge at reconstruction, usage and disapproval (p. 117). RTD 1006:2013, Utrecht, The Netherlands (in Dutch).
  • Saraf, V. K., Nowak, A. S., & Till, R. (1996). Proof load testing of bridges. Paper presented at the Probabilistic Mechanics & Structural Reliability: Proceedings of the Seventh Specialty Conference, Worcester, MA, USA.
  • Schacht, G., Bolle, G., Curbach, M., & Marx, S. (2016). Experimental evaluation of the shear bearing safety. Beton- und Stahlbetonbau, 111, 343–354 (in German).10.1002/best.v111.6
  • Schmidt, J. W., Hansen, S. G., Barbosa, R. A., & Henriksen, A. (2014). Novel shear capacity testing of ASR damaged full scale concrete bridge. Engineering Structures, 79, 365–374. doi:10.1016/j.engstruct.2014.08.027
  • Schwesinger, P., & Bolle, G. (2000). EXTRA – A new experiment supported condition assessment method for concrete bridges. Paper presented at the Proceedings of SPIE 3995, Nondestructive Evaluation of Highways, Utilities, and Pipelines IV.
  • Siemes, T., Han, N., & Visser, J. (2002). Unexpectedly low tensile strength in concrete structures. Heron, 47, 111–124.
  • Steenbergen, R. D. J. M., de Boer, A., & van der Veen, C. (2011). Safety assessment of existing concrete slab bridges for shear capacity. Paper presented at the Applications of Statistics and Probability in Civil Engineering, Zürich, Switzerland.
  • Talley, K. G. (2009). Assessment and strengthening of ASR and DEF affected concrete bridge columns (PhD thesis). UT Austin, Austin, TX.
  • TNO DIANA. (2012). DIANA users manual, Release 9.4.4. Delft, The Netherlands.
  • Varela-Ortiz, W., Cintrón, C. Y. L., Velázquez, G. I., & Stanton, T. R. (2010). Load testing and GPR assessment for concrete bridges on military installations. Construction and Building Materials, 38, 1255–1269.
  • Vergoossen, R., Naaktgeboren, M., ‘t Hart, M., de Boer, A., & Van Vugt, E. (2013). Quick scan on shear in existing slab type viaducts. Paper presented at the International IABSE Conference, Assessment, Upgrading and Refurbishment of Infrastructures, Rotterdam, The Netherlands.
  • Walraven, J. C. (2012). Proof loading of concrete bridges (Stevin Report 25-5-2012). Delft: Delft University of Technology (in Dutch).
  • Witteveen+Bos. (2014). Material research bridges case 31084913: 44G-113-01 – viaduct Zijlweg (p. 23). Deventer.
  • Yang, Y., & Hordijk, D. A. (2015). Acoustic emission measurement and analysis on Zijlwegbrug (Stevin Report 25.5-15-01, p. 27). Delft, The Netherlands: Delft University of Technology.