Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 14, 2018 - Issue 3
455
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Parametric study on buffeting performance of a long-span triple-tower suspension bridge

, ORCID Icon &
Pages 381-399 | Received 17 Jan 2017, Accepted 05 Apr 2017, Published online: 20 Jul 2017

References

  • Bartoli, G., & Mannini, C. (2008). A simplified approach to bridge deck flutter. Journal of Wind Engineering and Industrial Aerodynamics, 96, 229–256.10.1016/j.jweia.2007.06.001
  • Cai, C. S., Albrecht, P., & Bosch, H. R. (1999a). Flutter and buffeting analysis. I: Finite-element and RPE solution. ASCE Journal of Bridge Engineering, 4, 174–180.10.1061/(ASCE)1084-0702(1999)4:3(174)
  • Cai, C. S., Albrecht, P., & Bosch, H. R. (1999b). Flutter and buffeting analysis. II: Luling and Deer Isle Bridges. ASCE Journal of Bridge Engineering, 4, 181–188.10.1061/(ASCE)1084-0702(1999)4:3(181)
  • Chen, Z. Q. (2005). Wind engineering of bridges. Beijing: China Communications Press.
  • Chen, Z. Q., Han, Y., Hua, X. G., & Luo, Y. Z. (2009). Investigation on influence factors of buffeting response of bridges and its aeroelastic model verification for Xiaoguan bridge. Engineering Structures, 31, 417–431.10.1016/j.engstruct.2008.08.016
  • Chen, X. Z., Kareem, A., & Matsumoto, M. (2001). Multimode coupled flutter and buffeting analysis of long span bridges. Journal of Wind Engineering and Industrial Aerodynamics, 89, 649–664.10.1016/S0167-6105(01)00064-2
  • Chen, X. Z., & Kareem, A. (2002). Advances in modeling of aerodynamic forces on bridge decks. Journal of Engineering Mechanics, 128, 1193–1205.10.1061/(ASCE)0733-9399(2002)128:11(1193)
  • Choi, D. H., Gwon, S. G., & Na, H. S. (2014). Simplified analysis for preliminary design of towers in suspension bridges. ASCE Journal of Bridge Engineering, 19, 2–12.
  • Choi, D. H., Gwon, S. G., Yoo, H., & Na, H. S. (2013). Nonlinear static analysis of continuous multi-span suspension bridges. International Journal of Steel Structures, 13, 103–115.10.1007/s13296-013-1010-0
  • Chen, A. R. (2006). Wind-resistant research on the Taizhou Yangtze river highway bridge. Shanghai: Research Report of Tongji University.
  • Clough, R.W., & Penzien, J. (2003). Dynamics of structures. Berkeley, CA: Computers & Structures.
  • Davenport, A. G. (1962). Buffeting of a suspension bridge by storm winds. ASCE Journal of Structural Engineering, 88, 233–268.
  • Davenport, A. G. (1968). The dependence of wind load upon meteorological parameters. In Proceedings of the International Research Seminar on Wind Effects on Building and Structures (pp. 19–82). Toronto: University of Toronto Press.
  • Deodatis, G. (1996). Simulation of ergodic multivariate stochastic processes. Journal of Engineering Mechanics, 122, 778–787.10.1061/(ASCE)0733-9399(1996)122:8(778)
  • Denoël, V., & Maquoi, R. (2012). The concept of numerical admittance. Archive of Applied Mechanics, 82, 1337–1354.10.1007/s00419-012-0686-5
  • Ding, Q., & Lee, P. K. K. (2000). Computer simulation of buffeting actions of suspension bridges under turbulent wind. Computers and Structures, 76, 787–797.10.1016/S0045-7949(99)00197-2
  • Diana, G., Bruni, S., Cigada, A., & Zappa, E. (2002). Complex aerodynamic admittance function role in buffeting response of a bridge deck. Journal of Wind Engineering and Industrial Aerodynamics, 90, 2057–2072.10.1016/S0167-6105(02)00321-5
  • Fukuda, T. (1967). Analysis of multi-span suspension bridges. ASCE Journal of Structural Division, 93, 63–87.
  • Ge, Y. J. (2011). Wind resistance of long span suspension bridges. Beijing: China Communications Press.
  • Ge, Y. J., & Xiang, H. F. (2011). Extension of bridging capacity of cable-supported bridges using double main spans or twin parallel decks solutions. Structure and Infrastructure Engineering, 7, 551–567.10.1080/15732479.2010.496980
  • Gimsing, N. J. (1983). Cable supported bridges concept and design. New York, NY: Wiley.
  • Hatanaka, A., & Tanaka, H. (2002). New estimation method of aerodynamic admittance function. Journal of Wind Engineering and Industrial Aerodynamics, 90, 2073–2086.10.1016/S0167-6105(02)00324-0
  • Hua, X. G., Chen, Z. Q., Ni, Y. Q., Ko, J. M. (2007). Flutter analysis of long-span bridges using ANSYS. Wind and Structures, 10, 61–82.10.12989/was.2007.10.1.061
  • Isyumov, N. (2012). Alan G. Davenport’s mark on wind engineering. Journal of Wind Engineering and Industrial Aerodynamics, 104–106, 12–24.10.1016/j.jweia.2012.02.007
  • Jain, A., Jones, N. P., & Scanlan, R. H. (1998). Effect of modal damping on bridge aeroelasticity. Journal of Wind Engineering and Industrial Aerodynamics, 77–78, 421–430.10.1016/S0167-6105(98)00161-5
  • Kaimal, J. C. (1972). Spectral characteristics of surface layer turbulence. Quarterly Journal of the Royal Meteorological Society, 98, 563–589.10.1002/(ISSN)1477-870X
  • Liepmann, H. W. (1952). On the application of statistical concepts to the buffeting problem. Journal of the Aeronautical Sciences, 19, 793–800.10.2514/8.2491
  • Li, Y., & Kareem, A. (1993). Simulation of multivariate random processes: Hybrid DFT and digital filtering approach. ASCE Journal of Engineering Mechanics, 119, 1078–1098.10.1061/(ASCE)0733-9399(1993)119:5(1078)
  • Nazir, C. P. (1986). Multispan balanced suspension bridge. ASCE Journal of Structural Engineering, 112, 2512–2527.10.1061/(ASCE)0733-9445(1986)112:11(2512)
  • Ozkan, E., & Jones, N. P. (2003). Evaluation of response prediction methodology for long-span bridges using full-scale measurements. Proceedings of the 11th International Conference on Wind Engineering, 1407–1414.
  • Panofsky, H. A., & McCormick, R. A. (1960). The spectrum of vertical velocity near the surface. Journal of the Royal Metaorological Society, 86, 546–564.
  • Professional Standard PRC. (2004). Wind-resistant design specification for highway bridges. Beijing: China Communications Press.
  • Ren, W. X., Blandford, G. E., & Harik, I. E. (2004). Roebling suspension bridge. I: Finite-element model and free vibration response. ASCE Journal of Bridge Engineering, 9, 110–118.10.1061/(ASCE)1084-0702(2004)9:2(110)
  • Scanlan, R. H. (1978). The action of flexible bridges under wind, I: Flutter theory. Journal of Sound and Vibration, 60, 187–199.10.1016/S0022-460X(78)80028-5
  • Simiu, E., & Scanlan, R. H. (1996). Wind effects on structures: Fundamentals and applications to design. New York, NY: Wiley.
  • Sears, W. R. (1941). Aspects of non-stationary airfoil theory and its application. Journal of the Aeronautical Sciences, 19, 793–800.
  • Shinozuka, M., & Jan, C. M. (1972). Digital simulation of random processes and its applications. Journal of Sound and Vibration, 25, 111–128.10.1016/0022-460X(72)90600-1
  • Shinozuka, M., & Deodatis, G. (1991). Simulation of stochastic processes by spectral representation. Applied Mechanics Reviews, 44, 191–204.10.1115/1.3119501
  • Thai, H. T., & Choi, D. H. (2013). Advanced analysis of multi-span suspension bridges. Journal of Constructional Steel Research, 90, 29–41.10.1016/j.jcsr.2013.07.015
  • Wang, H., Li, A. Q., & Hu, R. M. (2011). Comparison of ambient vibration response of the Runyang suspension bridge under Skew winds with time-domain numerical predictions. ASCE Journal of Bridge Engineering, 16, 513–526.10.1061/(ASCE)BE.1943-5592.0000168
  • Wang, H., Li, A. Q., Niu, J., Zong, Z., & Li, J. (2013a). Long-term monitoring of wind characteristics at Sutong bridge site. Journal of Wind Engineering and Industrial Aerodynamics, 115, 39–47.10.1016/j.jweia.2013.01.006
  • Wang, H., Hu, R. M., Xie, J., Tong, T., & Li, A. (2013b). Comparative study on buffeting performance of Sutong bridge based on design and measured spectrum. ASCE Journal of Bridge Engineering, 18, 587–600.10.1061/(ASCE)BE.1943-5592.0000394
  • Wang, H., Tao, T. Y., Zhou, R., Hua, X., & Kareem, A. (2014). Parameter sensitivity study on flutter stability of a long-span triple-tower suspension bridge. Journal of Wind Engineering and Industrial Aerodynamics, 128, 12–21.10.1016/j.jweia.2014.03.004
  • Wu, T., Kareem, A., & Ge, Y. (2013). Linear and nonlinear aeroelastic analysis frameworks for cable-supported bridges. Nonlinear Dynamics, 74, 487–516.10.1007/s11071-013-0984-7
  • Xu, Y. L., Sun, D. K., Ko, J. M., & Lin, J. H. (1998). Buffeting analysis of long-span bridges: A new algorithm. Computers and Structures, 68, 303–313.10.1016/S0045-7949(98)00072-8
  • Xu, Y. L., Sun, D. K., Ko, J. M., & Lin, J. H. (2000). Fully coupled buffeting analysis of Tsing Ma suspension bridge. Journal of Wind Engineering and Industrial Aerodynamics, 85, 97–117.10.1016/S0167-6105(99)00133-6
  • Xu, Y. L., & Zhu, L. D. (2005). Buffeting response of long-span cable-supported bridges under skew winds. Part 2: Case study. Journal of Sound and Vibration, 281, 675–697.10.1016/j.jsv.2004.01.025
  • Xiang, H. F., Ge, Y. J., Zhu, L. D., Chen, A. R., & Gu, M. (2005). Modern theory and practice on bridge wind resistance. Beijing: China Communications Press.
  • Yamazaki, F., & Shinozuka, M. (1988). Digital generation of non‐gaussian stochastic fields. ASCE Journal of Engineering Mechanics, 114, 1183–1197.10.1061/(ASCE)0733-9399(1988)114:7(1183)
  • Yang, J. N. (1972). Simulation of random envelope processes. Journal of Sound and Vibration, 21, 73–85.10.1016/0022-460X(72)90207-6
  • Yang, W. W., Chang, T. Y. P., & Chang, C. C. (1997). An efficient wind field simulation technique for bridges. Journal of Wind Engineering and Industrial Aerodynamics, 67–68, 697–708.10.1016/S0167-6105(97)00111-6
  • Yoshida, O., Okuda, M., & Moriya, T. (2004). Structural characteristics and applicability of four-span suspension bridge. ASCE Journal of Bridge Engineering, 9, 453–463.
  • Zhang, X. J. (2004). Parametric study on the aerodynamic stability of a long-span suspension bridge. Journal of Wind Engineering and Industrial Aerodynamics, 92, 431–439.10.1016/j.jweia.2004.01.007
  • Zhang, X. J. (2010). Study of structural parameters on the aerodynamic stability of three-tower suspension bridge. Wind and Structures An International Journal, 13, 471–485.10.12989/was.2010.13.5.471
  • Zhu, L. D., & Xu, Y. L. (2005). Buffeting response of long-span cable-supported bridges under skew winds. Part 1: Theory. Journal of Sound and Vibration, 281, 647–673.10.1016/j.jsv.2004.01.026

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.