Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 14, 2018 - Issue 7
656
Views
2
CrossRef citations to date
0
Altmetric
Articles

Optimal sensor placement methods and metrics – comparison and implementation on a timber frame structure

, , , &
Pages 997-1010 | Received 31 Mar 2017, Accepted 30 Oct 2017, Published online: 16 Feb 2018

References

  • Allemang, R.J., & Brown, D.L. (1982). A correlation coefficient for modal vector analysis. In Proceedings of the 1st International Modal Analysis Conference (pp. 110–116). Orlando, FL: SEM.
  • Barthorpe, R.J., & Worden, K. (2009). Sensor placement optimization. Encyclopedia of Structural Health Monitoring. doi:10.1002/9780470061626.shm086
  • Breitfeld, T. (1996). A method for identification of a set of optimal measurement points for experimental modal analysis. The International Journal of Analytical and Experimental Modal Analysis, 11, 1–9.
  • Brownjohn, J., Rizos, C., Tan, G.-H., & Pan, T.-C. (2004). Real-time long-term monitoring and static and dynamic displacements of an office tower, combining RTK GPS and accelerometer data. First FIG International Symposium of Engineering Surveys for Construction Works and Structural Engineering, Nottingham, UK.
  • Carne, T.G., & Dohrmann, C.R. (1995). A modal test design strategy for model correlation. In Proceedings-SPIE The International Society For Optical Engineering (pp. 927–927).
  • Castro-Triguero, R., Saavedra Flores, E.I., DiazDelaO, F.A., Friswell, M.I., & Gallego, R. (2014). Optimal sensor placement in timber structures by means of a multi-scale approach with material uncertainty. Structural Control and Health Monitoring, 21(12), 1437–1452.10.1002/stc.v21.12
  • Çelebi, M. (2000). GPS in dynamic monitoring of long-period structures. Soil Dynamics and Earthquake Engineering, 20, 477–483.10.1016/S0267-7261(00)00094-4
  • Chang, M., & Pakzad, S. (2014). Optimal sensor placement for modal identification of bridge systems considering number of sensing nodes. Journal of Bridge Engineering, 19(6), 04014019.10.1061/(ASCE)BE.1943-5592.0000594
  • Charalampous, E., Psimoulis, P., Guillaume, S., Spiridonakos, M., Klis, R., Bürki, B., … Feltrin, G. (2015). Measuring sub-mm structural displacements using QDaedalus: A digital clip-on measuring system developed for total stations. Applied Geomatics, 7(2), 91–101.10.1007/s12518-014-0150-z
  • Chatzi, E.N., & Fuggini, C. (2015). Online correction of drift in structural identification using artificial white noise observations and an unscented Kalman Filter. Smart Structures and Systems, 16, 295–328.10.12989/sss.2015.16.2.295
  • Chatzi, E.N., & Smyth, A.W. (2009). The unscented Kalman filter and particle filter methods for nonlinear structural system identification with non-collocated heterogeneous sensing. Structural Control and Health Monitoring, 16, 99–123.10.1002/stc.v16:1
  • Dertimanis, V.K. (2013). On the use of dispersion analysis for model assessment in structural identification. Journal of Vibration and Control, 19, 2270–2284.10.1177/1077546313501536
  • Dertimanis, V.K., & Koulocheris, D.V. (2009). On the state-space realization of vector autoregressive structures: An assessment. In ICINCO 2009 – 6th International Conference on Informatics in Control, Automation and Robotics, Proceedings (pp. 20–27).
  • Dertimanis, V.K., & Koulocheris, D.V. (2011). VAR based state–space structures: Realization, statistics and spectral analysis. In J.A. Cetto, J. Filipe, and J.-L. Ferrier (Eds.), Lecture notes in electrical engineering (Vol. 85, pp. 301–315). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • DIN EN338. (2010). Structural timber-strength classes. Berlin, Germany: German version EN DIN Deutsches Institut für Normung. V.
  • Flynn, E.B., & Todd, M.D. (2010). A Bayesian approach to optimal sensor placement for structural health monitoring with application to active sensing. Mechanical Systems and Signal Processing, 24, 891–903.10.1016/j.ymssp.2009.09.003
  • Friswell, M., & Mottershead, J.E. (2013). Finite element model updating in structural dynamics. Dordrecht: Springer Science & Business Media.
  • Glassburn, R.S., & Smith, S.W. (1994). Evaluation of sensor placement algorithms for on-orbit identification of space platforms. In NASA. Goddard Space Flight Center, Eighteenth Space Simulation Conference: Space Mission Success Through Testing, (United States) (pp. 333–348).
  • Guo, H.Y., Zhang, L., Zhang, L.L., & Zhou, J.X. (2004). Optimal placement of sensors for structural health monitoring using improved genetic algorithms. Smart Materials and Structures, 13, 528.10.1088/0964-1726/13/3/011
  • Harmanci, Y.E., Spiridonakos, M.D., Chatzi, E.N., & Kübler, W. (2016). An autonomous strain-based structural monitoring framework for life-cycle analysis of a novel structure. Frontiers in Built Environment, 2, 13.
  • Heo, G., Wang, M., & Satpathi, D. (1997). Optimal transducer placement for health monitoring of long span bridge. Soil Dynamics and Earthquake Engineering, 16, 495–502.10.1016/S0267-7261(97)00010-9
  • Herranen, H., Kuusik, A., Saar, T., Reidla, M., Land, R., Martens, O., & Majak, J. (2014). Acceleration data acquisition and processing system for structural health monitoring. In Metrology for Aerospace (MetroAeroSpace), 2014 IEEE (pp. 244–248).10.1109/MetroAeroSpace.2014.6865928
  • Kammer, D.C. (1991). Sensor placement for on-orbit modal identification and correlation of large space structures. Journal of Guidance, Control, and Dynamics, 14, 251–259.10.2514/3.20635
  • Kammer, D.C. (1996). Optimal sensor placement for modal identification using system-realization methods. Journal of Guidance, Control, and Dynamics, 19, 729–731.10.2514/3.21688
  • Kammer, D.C. (2005). Sensor set expansion for modal vibration testing. Mechanical Systems and Signal Processing, 19, 700–713.10.1016/j.ymssp.2004.06.003
  • Kammer, D.C., & Tinker, M.L. (2004). Optimal placement of triaxial accelerometers for modal vibration tests. Mechanical Systems and Signal Processing, 18, 29–41.10.1016/S0888-3270(03)00017-7
  • Kammer, D.C., & Yao, L. (1994). Enhancement of on-orbit modal identification of large space structures through sensor placement. Journal of Sound and Vibration, 171, 119–139.10.1006/jsvi.1994.1107
  • Leach, M.P., & Hyzak, M.D. (1994). GPS structural monitoring as applied to cable-stayed suspension bridge. In International Federation of Surveyors (FIG), 20th Congress, Melbourne, Austrialia.
  • Lee, J.E., & Fassois, S.D. (1993). On the problem of stochastic experimental modal analysis based on multiple-excitation multiple-response data, part I: Dispersion analysis of continuous-time structural systems. Journal of Sound and Vibration, 161, 33–56.10.1016/0022-460X(93)90291-I
  • Leyder, C., Chatzi, E., Frangi, A., & Lombaert, G. (2016). Comparison of optimal sensor placement algorithms via implementation on an innovative timber structure. In Proceedings, International Symposium on Life-Cycle Civil Engineering (IALCCE 2016) (pp. 260–267). Delft, NL.
  • Leyder, C., Frangi, A., & Chatzi, E. (2016). Modal vibration testing of an innovative timber structure. In Proceedings of the World Conference on Timber Engineering (WCTE 2016) (pp. 145–153). Vienna, Austria.
  • Leyder, C., Ntertimanis, V.K., Chatzi, E., & Frangi, A. (2015). Optimal sensor placement for the modal identification of an innovative timber structure. In 1st ECCOMAS Thematic Conference on Uncertainty Quantification in Computational Sciences and Engineering, UNCECOMP 2015 (pp. 467–476).10.7712/120215
  • Leyder, C., Wanninger, F., Frangi, A., & Chatzi, E. (2014). Field testing on innovative timber structures. In Proceedings of the 13th World Conference on Timber Engineering WCTE. Quebec City, Canada
  • Leyder, C., Wanninger, F., Frangi, A., & Chatzi, E. (2015). Dynamic response of an innovative hybrid structure in hardwood. Proceedings of the Institution of Civil Engineers-Construction Materials, 168, 132–143.10.1680/coma.14.00043
  • Li, D. (2011). Sensor placement methods and evaluation criteria in structural health monitoring ( PhD thesis). Universität Siegen, Germany.
  • Li, D.S., Li, H.N., & Fritzen, C.P. (2007). The connection between effective independence and modal kinetic energy methods for sensor placement. Journal of Sound and Vibration, 305, 945–955.10.1016/j.jsv.2007.05.004
  • Li, D.S., Li, H.N., & Fritzen, C.P. (2009). On optimal sensor placement criterion for structural health monitoring with representative least squares method. Key Engineering Materials, 383–391.10.4028/www.scientific.net/KEM.413-414
  • Maes, K., Lourens, E., Van Nimmen, K., Reynders, E., De Roeck, G., & Lombaert, G. (2015). Design of sensor networks for instantaneous inversion of modally reduced order models in structural dynamics. Mechanical Systems and Signal Processing, 52, 628–644.10.1016/j.ymssp.2014.07.018
  • Meo, M., & Zumpano, G. (2005). On the optimal sensor placement techniques for a bridge structure. Engineering Structures, 27, 1488–1497.10.1016/j.engstruct.2005.03.015
  • Meyer, C.D. (2000). Matrix analysis and applied linear algebra. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics.10.1137/1.9780898719512
  • Omenzetter, P., Morris, H., Worth, M., Kohli, V., & Uma, S.R. (2011). Long-term monitoring and field testing of an innovative multi-storey timber building. In Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security (p. 798335). International Society for Optics and Photonics.
  • Papadimitriou, C. (2004). Optimal sensor placement methodology for parametric identification of structural systems. Journal of Sound and Vibration, 278, 923–947.10.1016/j.jsv.2003.10.063
  • Papadimitriou, C. (2005). Pareto optimal sensor locations for structural identification. Computer Methods in Applied Mechanics and Engineering, 194, 1655–1673.10.1016/j.cma.2004.06.043
  • Papadimitriou, C., & Lombaert, G. (2012). The effect of prediction error correlation on optimal sensor placement in structural dynamics. Mechanical Systems and Signal Processing, 28, 105–127.10.1016/j.ymssp.2011.05.019
  • Papadimitriou, C., Haralampidis, Y., & Sobczyk, K. (2005). Optimal experimental design in stochastic structural dynamics. Probabilistic Engineering Mechanics, 20, 67–78.10.1016/j.probengmech.2004.06.002
  • Papadopoulos, M., & Garcia, E. (1998). Sensor placement methodologies for dynamic testing. AIAA Journal, 36, 256–263.10.2514/2.7509
  • Park, H.S., Kim, J.M., Choi, S.W., & Kim, Y. (2013). A wireless laser displacement sensor node for structural health monitoring. Sensors, 13, 13204–13216.10.3390/s131013204
  • Pickrel, C.R. (1999). A practical approach to modal pretest design. Mechanical Systems and Signal Processing, 13, 271–295.10.1006/mssp.1998.1212
  • Raziq, N., & Collier, P. (2007). GPS deflection monitoring of the West Gate Bridge. Journal of Applied Geodesy Jag, 1, 35–44.
  • Rodrigues, C., Inaudi, D., & Glišić, B. (2013). Long-gauge fibre optic sensors: Performance comparison and applications. International Journal of Lifecycle Performance Engineering, 4(1.3), 209–233.10.1504/IJLCPE.2013.058196
  • Said, W.M., & Staszewski, W.J. (2001). Optimal sensor location for damage detection using mutual information. Signal Processing and Composites, 428–435.
  • Salama, M., Rose, T., & Garba, J. (1987). Optimal placement of excitations and sensors for verification of large dynamical systems. In 28th Structures, Structural Dynamics and Materials Conference (pp. 6–8).
  • Shi, Z.Y., Law, S.S., & Zhang, L.M. (2000). Optimum sensor placement for structural damage detection. Journal of Engineering Mechanics, 126, 1173–1179.10.1061/(ASCE)0733-9399(2000)126:11(1173)
  • Stephan, C. (2012). Sensor placement for modal identification. Mechanical Systems and Signal Processing, 27, 461–470.10.1016/j.ymssp.2011.07.022
  • Trendafilova, I., Heylen, W., & Van Brussel, H. (2001). Measurement point selection in damage detection using the mutual information concept. Smart Materials and Structures, 10, 528.10.1088/0964-1726/10/3/315
  • Wanninger, F. (2015). Post-tensioned timber frame structures. Zürich: ETH Zürich.
  • Worden, K., Burrows, A.P., & Tomlinson, G.R. (1995). A combined neural and genetic approach to sensor placement. In Proceedings of the 13th International Modal Analysis Conference (p. 1727).
  • Yao, L., Sethares, W.A., & Kammer, D.C. (1993). Sensor placement for on-orbit modal identification via a genetic algorithm. AIAA Journal, 31, 1922–1928.10.2514/3.11868
  • Yi, T.-H., & Li, H.-N. (2012). Methodology developments in sensor placement for health monitoring of civil infrastructures. International Journal of Distributed Sensor Networks, 2012, 1–11.
  • Yi, T.-H., Li, H.-N., & Gu, M. (2011). A new method for optimal selection of sensor location on a high-rise building using simplified finite element model. Structural Engineering and Mechanics, 37, 671–684.10.12989/sem.2011.37.6.671
  • Yi, T.-H., Li, H.-N., & Zhang, X.-D. (2012). Sensor placement on Canton Tower for health monitoring using asynchronous-climb monkey algorithm. Smart Materials and Structures, 21, 125023.10.1088/0964-1726/21/12/125023

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.