Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 14, 2018 - Issue 10
448
Views
16
CrossRef citations to date
0
Altmetric
Articles

Stochastic optimisation of buckling restrained braced frames under seismic loading

, , ORCID Icon &
Pages 1386-1401 | Received 02 Dec 2016, Accepted 12 Nov 2017, Published online: 01 Mar 2018

References

  • Atalik, T.S., & Utku, S. (1976). Stochastic linearization of multi-degree-of-freedom non-linear systems. Earthquake Engineering and Structural Dynamics, 4(4), 411–420.10.1002/(ISSN)1096-9845
  • Balling, R.J., Balling, L.J., & Richards, P.W. (2009). Design of buckling-restrained braced frames using nonlinear time history analysis and optimization. Journal of Structural Engineering, 135(5), 461–468.10.1061/(ASCE)ST.1943-541X.0000007
  • Beck, A.T., Kougioumtzoglou, I.A., & dos Santos, K.R.M. (2014). Optimal performance-based design of non-linear stochastic dynamical RC structures subject to stationary wind excitation. Engineering Structures, 78, 145–153.10.1016/j.engstruct.2014.07.047
  • Bhattacharjya, S., & Chakraborty, S. (2009). Robust optimization of linear dynamic system with random parameters under stochastic earthquake excitation. International Journal of Reliability, Quality and Safety Engineering, 16(3), 261–279.10.1142/S0218539309003393
  • Bhattacharjya, S., & Chakraborty, S. (2011). Robust optimization of structures subjected to stochastic earthquake with limited information on system parameter uncertainty. Engineering Optimization, 43(12), 1311–1330.10.1080/0305215X.2011.554545
  • Black, C.J., Makris, N., & Aiken, I.D. (2004). Component testing, seismic evaluation and characterization of buckling-restrained braces. Journal of Structural Engineering, 130(6), 880–894.10.1061/(ASCE)0733-9445(2004)130:6(880)
  • Blngqi, M. (1993). Direct integration variance prediction of random response of nonlinear systems. Computers and Structures, 46(6), 979–983.10.1016/0045-7949(93)90082-O
  • Boggs, Daryl & Petersen, C.P. (1995). Acceleration Indexes for Human Comfort in Tall Buildings—Peak or RMS? Utilities Policy, 10(2), 63–73.
  • Bosco, M., & Marino, E.M. (2013). Design method and behavior factor for steel frames with buckling restrained braces. Earthquake Engineering and Structural Dynamics, 42(8), 1243–1263.10.1002/eqe.v42.8
  • Bosco, M., Ferrara, E., Ghersi, A., Marino, E.M., & Rossi, P.P. (2016). Improvement of the model proposed by Menegotto and Pinto for steel. Engineering Structures, 124, 442–456.10.1016/j.engstruct.2016.06.037
  • Bouc, R. (1967). Forced vibration of mechanical systems with hysteresis. In Proceedings of the 4th Conference on Nonlinear Oscillations (p. 315). Prague, Czechoslovakia.
  • Bruneau, M., Uang, C.M., & Sabelli, R. (2011). Ductile design of steel structures (2nd ed.). The McGraw-Hill Companies.
  • Bycroft, G.N. (1960). White noise representation of earthquakes. ASCE Journal of the Engineering Mechanics Division, 86(2), 1–16.
  • Choi, H.H., & Kim, J.K. (2006). Energy-based seismic design of buckling-restrained braced frames using hysteretic energy spectrum. Engineering Structures, 28(2), 304–311.10.1016/j.engstruct.2005.08.008
  • Clark, P., Kasai, K., Aiken, I.D., Kimura, I., Kasai, K., & Aiken, I.D. (2000). Evaluation of design methodologies for structures incorporating steel unbonded braces for energy dissipation. In Proceedings of the 12th World Conference on Earthquake Engineering (p. 2240).
  • Clark, P.W., Aiken, I.D., Kasai, K., & Kimura, I. (2000). Large-scale testing of steel unbonded braces for energy dissipation. In Advanced Technology in Structural Engineering (pp. 1–5).
  • Clough, R.W., & Penzien, J. (1975). Dynamics of structures (3rd ed.). Berkeley, CA: Computers & Structures.
  • Conte, J.P., & Peng, B.F. (1997). Fully nonstationary analytical earthquake ground-motion model. Journal of Engineering Mechanics, 123(1), 15–24.10.1061/(ASCE)0733-9399(1997)123:1(15)
  • Della Corte, G., D’Aniello, M., & Landolfo, R. (2015). Field testing of all-steel buckling-restrained braces applied to a damaged reinforced concrete building. Journal of Structural Engineering, 141(1), D4014004.10.1061/(ASCE)ST.1943-541X.0001080
  • Di Sarno, L.D., & Elnashai, A.S. (2005). Innovative strategies for seismic retrofitting of steel and composite structures. Progress in Structural Engineering and Materials, 7(3), 115–135.10.1002/(ISSN)1528-2716
  • Dickinson, B.W., & Gavin, H.P. (2010). Parametric statistical generalization of uniform-hazard earthquake ground motions. Journal of Structural Engineering, 137(3), 410–422.
  • Fahnestock, L.A., Ricles, J.M., & Sause, R. (2007). Experimental evaluation of a large-scale buckling-restrained braced frame. Journal of Structural Engineering, 133(9), 1205–1214.10.1061/(ASCE)0733-9445(2007)133:9(1205)
  • Fahnestock, L.A., Sause, R., & Ricles, J.M. (2007). Seismic Response and Performance of Buckling-Restrained Braced Frames. Journal of Structural Engineering, 133(9), 1195–1204.10.1061/(ASCE)0733-9445(2007)133:9(1195)
  • Fan, F.G., & Ahmadi, G. (1990). Nonstationary Kanai-Tajimi models for El Centro 1940 and Mexico City 1985 earthquakes. Probabilistic Engineering Mechanics, 5(4), 171–181.10.1016/0266-8920(90)90018-F
  • Fatemi, A.A., Bagheri, A., Amiri, G.G., & Tabrizian, Z. (2012). Generation of design basis earthquake accelerograms. In 15th World Conference on Earthquake Engineering (15WCEE). Lisboa.
  • Fujimoto, M., Wada, A., Saeki, E., Takeuchi, T., & Watanabe, A. (1990). Development of unbonded brace. Quarterly Colume, 115, 91–96.
  • Giuclea, M., Sireteanu, T., & Mitu, A.M. (2009). Use of genetic algorithms for fitting the Bouc-Wen model to experimental hysteretic curves. Romanian Journal of Technical Sciences- Applied Mechanics, 54(1), 3–10.
  • Grigoriu, M. (2010). To scale or not to scale seismic ground-acceleration records. Journal of Engineering Mechanics, 137(4), 284–293.
  • Grigoriu, M. (2016). Do seismic intensity measures (IMs) measure up? Probabilistic Engineering Mechanics, 46, 80–93.10.1016/j.probengmech.2016.09.002
  • Hoffman, E.W., & Richards, P.W. (2014). Efficiently implementing genetic optimization with nonlinear response history analysis of taller buildings. Journal of Structural Engineering, 140(8), A4014011.10.1061/(ASCE)ST.1943-541X.0000943
  • Housner, G.W. (1955). Properties of strong ground motion earthquakes. Bulletin of the Seismological Society of America, 45(3), 197–218.
  • Hurtado, J.E., & Barbat, A.H. (2000). Equivalent linearization of the Bouc-Wen hysteretic model. Engineering Structures, 22(9), 1121–1132.10.1016/S0141-0296(99)00056-5
  • Iwata, M., Kato, T., & Wada, A. (2003). Performance evaluation of buckling-restrained braces in damage-controlled structures. In F.M. Mazzolani (Ed.), Proceedings of the Conference on Behavior of Steel Structures in Seismic Areas (STESSA) (pp. 37–43). Naples, Italy.
  • Jensen, H.A. (2005). Structural optimization of linear dynamical systems under stochastic excitation: A moving reliability database approach. Computer Methods in Applied Mechanics and Engineering, 194(12–16), 1757–1778.10.1016/j.cma.2003.10.022
  • Jensen, H.A. (2006). Structural optimization of non-linear systems under stochastic excitation. Probabilistic Engineering Mechanics, 21(4), 397–409.10.1016/j.probengmech.2006.02.002
  • Jensen, H.A. (2009). Tradeoff analysis of non-linear dynamical systems under stochastic excitation. Probabilistic Engineering Mechanics, 24(4), 585–599.10.1016/j.probengmech.2009.04.003
  • Jensen, H.A., & Beer, M. (2010). Discrete-continuous variable structural optimization of systems under stochastic loading. Structural Safety, 32(5), 293–304.10.1016/j.strusafe.2010.03.007
  • Jensen, H.A., & Sepulveda, A.E. (2000). Optimal design of uncertain systems under stochastic excitation. AIAA Journal, 38(11), 2133–2141.10.2514/2.876
  • Jensen, H.A., Marillanca, A., & Peñaloza, O. (2008). A computational procedure for response statistics-based optimization of stochastic non-linear FE-models. Computer Methods in Applied Mechanics and Engineering, 198(1), 125–137.10.1016/j.cma.2008.02.034
  • Jensen, H.A., Valdebenito, M.A., & Sepulveda, J.G. (2013). Optimal design of base-isolated systems under stochastic earthquake excitation. In M. Papadrakakis, V. Papadopoulos, & G. Stefanou (Eds.), Computational methods in stochastic dynamics (Vol. 26, pp. 161–178). Dordrecht: Springer.10.1007/978-94-007-5134-7
  • Kanai, K. (1957). Semi-empirical formula for the seismic characteristics of the ground. Bunkyō: Earthquake Research Institute, University of Tokyo.
  • Khampanit, A., Leelataviwat, S., Kochanin, J., & Warnitchai, P. (2014). Energy-based seismic strengthening design of non-ductile reinforced concrete frames using buckling-restrained braces. Engineering Structures, 81, 110–122.10.1016/j.engstruct.2014.09.033
  • Khoo, H.H., Tsai, K.C., Tsai, C.Y., Tsai, C.Y., & Wang, K.J. (2016). Bidirectional substructure pseudo-dynamic tests and analysis of a full-scale two-story buckling-restrained braced frame. Earthquake Engineering and Structural Dynamics, 45(7), 1085–1107.10.1002/eqe.v45.7
  • Kim, J., & Seo, Y. (2004). Seismic design of low-rise steel frames with buckling-restrained braces. Engineering Structures, 26(5), 543–551.10.1016/j.engstruct.2003.11.005
  • Kolda, T.G., Lewis, R.M., & Torczon, V. (2003). Optimization by direct search: New perspectives on some classical and modern methods. SIAM Review, 45(3), 385–482.10.1137/S003614450242889
  • Krawinkler, H. (2000). State of the art report on systems performance of steel moment frames subject to earthquake ground shaking ( Report No. FEMA-355C). Sacramento, CA: SAC Joint Venture.
  • Lin, Y.K., & Yong, Y. (1987). Evolutionary Kanai-Tajimi Earthquake Models. Journal of Engineering Mechanics, 113(8), 1119–1137.10.1061/(ASCE)0733-9399(1987)113:8(1119)
  • Lin, P.C., Tsai, K.C., Wang, K.J., Yu, Y.J., Wei, C.Y., Wu, A.C., … Roeder, C.W. (2012). Seismic design and hybrid tests of a full-scale three-story buckling-restrained braced frame using welded end connections and thin profile. Earthquake Engineering and Structural Dynamics, 41(5), 1001–1020.10.1002/eqe.v41.5
  • Lin, P.C., Tsai, K.C., Wu, A.C., Chuang, M.C., Li, C.H., & Wang, K.J. (2015). Seismic design and experiment of single and coupled corner gusset connections in a full-scale two-story buckling-restrained braced frame. Earthquake Engineering and Structural Dynamics, 44(13), 2177–2198.10.1002/eqe.v44.13
  • Luco, N., & Bazzurro, P. (2007). Does amplitude scaling of ground motion records result in biased nonlinear structural drift responses? Earthquake Engineering and Structural Dynamics, 36(13), 1813–1835.10.1002/(ISSN)1096-9845
  • Mahrenholtz, C., Lin, P.C., Wu, A.C., Tsai, K.C., Hwang, S.J., Lin, R.Y., & Bhayusukma, M.Y. (2015). Retrofit of reinforced concrete frames with buckling-restrained braces. Earthquake Engineering and Structural Dynamics, 44(1), 59–78.10.1002/eqe.v44.1
  • Martínez, C.A., Curadelli, O., & Compagnoni, M.E. (2014). Optimal placement of nonlinear hysteretic dampers on planar structures under seismic excitation. Engineering Structures, 65, 89–98.10.1016/j.engstruct.2014.01.030
  • Mayes, R.L., Goings, C., Naguib, W., Harris, S., Lovejoy, J., Fanucci, J.P., … Hayes, J. (2004). Comparative performance of buckling-restrained braces and moment frames. In Proceedings of the 13th World Conference on Earthquake Engineering (pp. 1–6). Vancouver, BC, Canada.
  • Mitseas, I.P., Kougioumtzoglou, I.A., Beer, M., Patelli, E., & Mottershead, J.E. (2014). Robust design optimization of structural systems under evolutionary stochastic seismic excitation. In Vulnerability, Uncertainty, and Risk: Quantification, Mitigation, and Management (pp. 215–224). ASCE.10.1061/9780784413609
  • Mitseas, I.P., Kougioumtzoglou, I.A., & Beer, M. (2016). An approximate stochastic dynamics approach for nonlinear structural system performance-based multi-objective optimum design. Structural Safety, 60, 67–76.10.1016/j.strusafe.2016.01.003
  • Murakami, Y., Noshi, K., Fujita, K., Tsuji, M., & Takewaki, I. (2015). Optimal placement of hysteretic dampers via adaptive sensitivity-smoothing algorithm. Engineering and Applied Sciences Optimization (Vol. 38, pp. 233–247). Springer International Publishing.10.1007/978-3-319-18320-6
  • Proppe, C., Pradlwarter, H.J., & Schuëller, G.I. (2003). Equivalent linearization and Monte Carlo simulation in stochastic dynamics. Probabilistic Engineering Mechanics, 18(1), 1–15.10.1016/S0266-8920(02)00037-1
  • Rossi, P.P. (2015). Importance of isotropic hardening in the modeling of buckling restrained braces. Journal of Structural Engineering, 141(4), 04014124.10.1061/(ASCE)ST.1943-541X.0001031
  • Sabelli, R. (2001). Research on improving the design and analysis of earthquake-resistant steel-braced frames. Oakland: EERI.
  • Sabelli, R., Mahin, S., & Chang, C. (2003). Seismic demands on steel braced frame buildings with buckling-restrained braces. Engineering Structures, 25(5), 655–666.10.1016/S0141-0296(02)00175-X
  • Singh, M.P., & Moreschi, L.M. (2002). Optimal placement of dampers for passive response control. Earthquake Engineering and Structural Dynamics, 31(4), 955–976.10.1002/(ISSN)1096-9845
  • Sireteanu, T., Giuclea, M., & Mitu, A.M. (2010). Identification of an extended Bouc-Wen model with application to seismic protection through hysteretic devices. Computational Mechanics, 45(5), 431–441.10.1007/s00466-009-0451-y
  • Skinner, R.I., Kelly, J.M., & Heine, A.J. (1975). Hysteretic dampers for earthquake-resistant structures. Earthquake Engineering and Structural Dynamics, 3(3), 287–296.
  • Somerville, P.G. (1997). Development of ground motion time histories for phase 2 of the FEMA/SAC steel project. SAC Joint Venture.
  • Soong, T.T., & Grigoriu, M. (1993). Random vibration of mechanical and structural systems. (H. Tellem, Ed.). Upper Saddle River, NJ: Prentice Hall.
  • Spanos, P.T.D. (1980). Formulation of stochastic linearization for symmetric or asymmetric MDOF nonlinear systems. Journal of Applied Mechanics, 47, 209–211.10.1115/1.3153613
  • Spanos, P.T.D. (1981). A generalization to stochastic averaging in random vibration. Applied Mechanics Reviews, 34(1), 1–8.
  • Speicher, M.S., & Harris, J.L. (2017). ASCE/SEI 41 predicted performance of newly designed BRBFs. In Proceedings of the 16th World Conference on Earthquake Engineering (16WCEE) (pp. 1–14). Santiago, Chile.
  • Spencer, B.F., Jr., & Bergman, L.A. (1985). On the reliability of a simple hysteretic system. Journal of Engineering Mechanics, 111(12), 1502–1514.10.1061/(ASCE)0733-9399(1985)111:12(1502)
  • Sugisawa, M., Saeki, E., Nakamura, H., Hirabayashi, R., Ichikawa, Y., Ueki, M., & Hokari, M. (1995). Development of earthquake-resistant, vibration control, and base isolation technology for building structures. Nippon Steel Technical Report, 66(66), 37–46.
  • Tajimi, H. (1960). A statistical method of determining the maximum response of a building structure during an earthquake. In Proceedings of the 2nd World Conference on Earthquake Engineering (pp. 781–797). Tokyo, Japan.
  • Takewaki, I. (1997). Optimal damper placement for minimum transfer functions. Earthquake Engineering and Structural Dynamics, 26(11), 1113–1124.10.1002/(ISSN)1096-9845
  • Tsai, K.C., & Hsiao, P.C. (2008). Pseudo-dynamic test of a full-scale CFT/BRB frame-Part II: Seismic performance of buckling-restrained braces and connections. Earthquake Engineering and Structural Dynamics, 37(7), 1099–1115.10.1002/(ISSN)1096-9845
  • Tsai, K.C., Hsiao, P.C., Wang, K.J., Weng, Y.T., Lin, M.L., Lin, K.C., … Lin, S.L. (2008). Pseudo-dynamic tests of a full-scale CFT/BRB frame-Part I: Specimen design, experiment and analysis. Earthquake Engineering and Structural Dynamics, 37(7), 1081–1098.10.1002/(ISSN)1096-9845
  • Tsai, K.C., Wu, A.C., Wei, C.Y., Lin, P.C., Chuang, M.C., & Yu, Y.J. (2014). Welded end-slot connection and debonding layers for buckling-restrained braces. Earthquake Engineering & Structural Dynamics, 43(12), 1785–1807.10.1002/eqe.v43.12
  • Uang, C.M., Nakashima, M., & Tsai, K.C. (2004). Research and application of buckling-restrained braced frames. International Journal of Steel Structures, 4(4), 301–313.
  • Watanabe, A., Hitomi, Y., Saeki, E., Wada, A., & Fujimoto, M. (1988). Properties of brace encased in buckling-restraining concrete and steel tube. In Proceedings of 9th World Conference on Earthquake Engineering (Vol. IV, pp. 719–724). Tokyo-Kyoto, Japan.
  • Wen, Y.K. (1976). Method for random vibration of hysteretic systems. Journal of the Engineering Mechanics Division, 102(2), 249–263.
  • Wen, Y.K. (1980). Equivalent linearization for hysteretic systems under random excitation. Journal of Applied Mechanics, 47(1), 150–154.10.1115/1.3153594
  • Wu, A.C., Tsai, K.C., Yang, H.H., Huang, J.L., Li, C.H., Wang, K.J., & Khoo, H.H. (2017). Hybrid experimental performance of a full-scale two-story buckling-restrained braced RC frame. Earthquake Engineering and Structural Dynamics, 46(8), 1223–1244.10.1002/eqe.v46.8
  • Xu, J., Spencer, B.F., Jr, Lu, X., Chen, X., & Lu, L. (2017). Optimization of structures subject to stochastic dynamic loading. Computer-Aided Civil and Infrastructure Engineering, 32(8), 657–673.10.1111/mice.2017.32.issue-8
  • Zhou, Z., Xie, Q., Meng, S.P., Wang, W.Y., & He, X.T. (2016). Hysteretic performance analysis of self-centering buckling restrained braces using a rheological model. Journal of Engineering Mechanics, 142(6), 04016032.10.1061/(ASCE)EM.1943-7889.0001080
  • Zona, A., & Dall’Asta, A. (2012). Elastoplastic model for steel buckling-restrained braces. Journal of Constructional Steel Research, 68(1), 118–125.10.1016/j.jcsr.2011.07.017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.