Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 15, 2019 - Issue 5
344
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Reliability-based load factors for airblast and structural reliability of reinforced concrete columns for protective structures

Pages 634-646 | Received 05 Jun 2018, Accepted 09 Oct 2018, Published online: 06 Feb 2019

References

  • ASCE. (1997). Design of blast resistant buildings in petrochemical facilities. Reston, VA: American Society of Civil Engineers.
  • Bogosian, D., Yokota, M., & Rigby, S. E. (2016). TNT equivalence of C-4 and PE4: A review of traditional sources and recent data. In: Proceedings of the 24th Military Aspects of Blast and Shock, Halifax, Nova Scotia, Canada.
  • Bulsom, P. S. (1997). Explosive loading of engineering structures. London: E&FN Spon.
  • Campidelli, M., Razaqpur, A. G., & Foo, S. (2013). Reliability-based load factors for blast design. Canadian Journal of Civil Engineering, 40(5), 461–474. doi: 10.1139/cjce-2011-0411
  • Campidelli, M., Tait, M. J., El-Dakhakhni, W. W., & Mekky, W. (2015). Inference of blast wavefront parameter uncertainty for probabilistic risk assessment. Journal of Structural Engineering, 141(12), 04015062. doi: 10.1061/(ASCE)ST.1943-541X.0001299
  • ConWep. (1991). Conventional weapons effects program 1991 prepared by D.W. Hyde. Vicksburg: US Waterways Experimental Station.
  • DDESB. (2009). Approved methods and algorithms for DoD risk-based explosives siting. Alexandria, VA: Department of Defense Explosives Safety Board (DDESB), 21 July 2009.
  • Dusenberry, D. O. (2010). Handbook for blast-resistant design of buildings. Hoboken, NJ: John Wiley & Sons.
  • Eamon, E. (2007). Reliability of concrete masonry unit walls subjected to explosive loads. Journal of Structural Engineering, 133(7), 935–944. doi: 10.1061/(ASCE)0733-9445(2007)133:7(935)
  • Ellingwood, B. R. (2006). Mitigating risk from abnormal loads and progressive collapse. Journal of Performance of Constructed Facilities, 20(4), 315–323. doi: 10.1061/(ASCE)0887-3828(2006)20:4(315)
  • Ellingwood, B. R., Galambos, T. V., Macgregor, J. G., & Cornell, C. A. (1980). Development of probability based load criterion for American national standard A58, National Bureau of Standards Special Publication 577. Washington, DC, USA: U.S. Government Printing Office.
  • Fib. (2016). Partial factor methods for existing concrete structures, fib Bulletin No. 80. Ecublens, Switzerland: Fédération internationale du béton.
  • Foster, S., Stewart, M. G., Loo, M., Ahammed, S., & Sirivivatnanon, V. (2016). Calibration of Australian Standard AS3600 concrete structures, Part I: Statistical analysis of material properties and model error. Australian Journal of Structural Engineering, 17(4), 242–253. doi: 10.1080/13287982.2016.1246793
  • Grant, M., & Stewart, M. G. (2015). Probabilistic risk assessment for improvised explosive device attacks causing significant building damage. Journal of Performance of Constructed Facilities, 29(5), B4014009. doi: 10.1061/(ASCE)CF.1943-5509.0000694
  • Grant, M. J., & Stewart, M. G. (2017). Modelling improvised explosive device attacks in the west – Assessing the hazard. Reliability Engineering and System Safety, 165(9), 354–354.
  • Hao, H., Stewart, M. G., Li, Z.-X., & Shi, Y. (2010). RC column failure probabilities to blast loads. International Journal of Protective Structures, 1(4), 571–591. doi: 10.1260/2041-4196.1.4.571
  • Hao, H., Li, Z. X., & Shi, Y. (2016). Reliability analysis of RC columns and frame with FRP Strengthening subjected to explosive loads. Journal of Performance of Constructed Facilities, 30(2), 04015017. doi: 10.1061/(ASCE)CF.1943-5509.0000748
  • ISO 2394. (2015). General principles on reliability for structures. Geneva: International Organization for Standardization.
  • Kelliher, D., & Sutton-Swaby, K. (2012). Stochastic representation of blast load damage in a reinforced concrete building. Structural Safety, 34(1), 407–417. doi: 10.1016/j.strusafe.2011.08.001
  • Little, R. G. (2007). Cost-effective strategies to address urban terrorism: A risk management approach. In H. W. Richardson, P. Gordon, & J. E. Moore (Eds.), The economic costs and consequences of terrorism (pp. 98–115). Cheltenham, UK: Edward Elgar Publishing.
  • Landucci, G., Reniers, G., Cozzani, V., & Salzano, E. (2015). Vulnerability of industrial facilities to attacks with improvised explosive devices aimed at triggering domino scenarios. Reliability Engineering and System Safety, 143, 53–62. doi: 10.1016/j.ress.2015.03.004
  • Mays, G., & Faltham, I. (2009). Design of elements in reinforced concrete and masonry. In D. Cormie, G. Mays, & P. Smith (Eds.), Blast effects on buildings (pp. 119–153). London: Thomas Telford.
  • Mirza, S. A., & MacGregor, J. G. (1979). Variations in dimensions of reinforced concrete members. ASCE Journal of the Structural Division, 105(ST4), 751–766.
  • Mueller, J., & Stewart, M. G. (2011). Terror, security, and money: Balancing the risks, benefits, and costs of homeland security. Oxford and New York: Oxford University Press.
  • Mueller, J., & Stewart, M. G. (2016). Chasing ghosts: The policing of terrorism. Oxford and New York: Oxford University Press.
  • Netherton, M. D., & Stewart, M. G. (2009). The effects of explosive blast load variability on safety hazard and damage risks for monolithic window glazing. International Journal of Impact Engineering, 36(12), 1346–1354. doi: 10.1016/j.ijimpeng.2009.02.009
  • Netherton, M. D., & Stewart, M. G. (2010). Blast-load variability and accuracy of blast-load prediction models. International Journal of Protective Structures, 1 4), 543–557. doi: 10.1260/2041-4196.1.4.543
  • Olmati, P., Petrini, F., & Gkoumas, K. (2014). Fragility analysis for the performance-based design of cladding wall panels subjected to blast load. Engineering Structures, 78, 112–120. doi: 10.1016/j.engstruct.2014.06.004
  • Olmati, P., Petrini, F., Vamvatsikos, D., & Gantes, C. J. (2016). Simplified fragility-based risk analysis for impulse governed blast loading scenarios. Engineering Structures, 117, 457–469. doi: 10.1016/j.engstruct.2016.01.039
  • Olmati, P., Vamvatsikos, D., & Stewart, M. G. (2017). Safety factor for structural elements subjected to impulsive blast loads. International Journal of Impact Engineering, 106(8), 249–258. doi: 10.1016/j.ijimpeng.2017.04.009
  • Razaqpur, A. G., Campidelli, M., & Foo, S. (2012). Experimental versus analytical response of structures to blast loads. In H. Hao & Z-X. Li (Eds.), Recent research advances on protective structures (pp. 163–194). London: CRC Press.
  • Salzano, E., & Basco, A. (2012). A comparison of thermodynamic of explosion of TNT and black powder by means of Le Chatelier diagram. Propellants, Explosives, Pyrotechnics, 37(6), 724–731. doi: 10.1002/prep.201100050
  • Shi, Y. C., Hao, H., & Li, Z. X. (2008). Numerical derivation of pressure-impulse diagrams for prediction of RC column damage to blast loads. International Journal of Impact Engineering, 35(11), 1213–1227. doi: 10.1016/j.ijimpeng.2007.09.001
  • Shi, Y., & Stewart, M. G. (2015). Spatial reliability analysis of explosive blast load damage to reinforced concrete columns. Structural Safety, 53, 13–25. doi: 10.1016/j.strusafe.2014.07.003
  • Shi, Y., & Stewart, M. G. (2015). Damage and risk assessment for reinforced concrete wall panels subject to explosive blast loading. International Journal of Impact Engineering, 85, 5–19. doi: 10.1016/j.ijimpeng.2015.06.003
  • Smith, P. S., & Hetherington, J. G. (1994). Blast and ballistic loading of structures. Oxford, UK: Butterworth-Heinemann.
  • Stewart, M. G. (2008). Cost-effectiveness of risk mitigation strategies for protection of buildings against terrorist attack. ASCE, Journal of Performance of Constructed Facilities, 22(2), 115–120. doi: 10.1061/(ASCE)0887-3828(2008)22:2(115)
  • Stewart, M. G. (2011). Life safety risks and optimisation of protective measures against terrorist threats to infrastructure. Structure and Infrastructure Engineering, 7(6), 431–440. doi: 10.1080/15732470902726023
  • Stewart, M. G., & Netherton, M. D. (2015). Reliability-based design load factors for explosive blast loading. Journal of Performance of Constructed Facilities, 29(5), B4014010. doi: 10.1061/(ASCE)CF.1943-5509.0000709
  • Stewart, M. G., Foster, S., Ahammed, S., & Sirivivatnanon, V. (2016). Calibration of Australian Standard AS3600 concrete structures, Part II: Reliability indices and changes to capacity reduction factors. Australian Journal of Structural Engineering, 17(4), 254–266. doi: 10.1080/13287982.2016.1246215
  • Stewart, M. G. (2017). Risk of progressive collapse of buildings from terrorist attacks: Are the benefits of protection worth the cost? Journal of Performance of Constructed Facilities, 31(2), 04016093. doi: 10.1061/(ASCE)CF.1943-5509.0000954
  • Stewart, M. G. (2018). Reliability-based load factor design model for explosive blast loading. Structural Safety, 71, 13–23. doi: 10.1016/j.strusafe.2017.10.010
  • TM5-1300. (1990). Design of structures to resist the effects of accidental explosions. USA: US Department of the Army Technical Manual TM5-1300.
  • Twisdale, L. A., Sues, R. H., & Lavelle, F. M. (1994). Reliability-based design methods for protective structures. Structural Safety, 15(1–2), 17–33. doi: 10.1016/0167-4730(94)90050-7
  • UFC 3-340-02. (2008). Structures to resist the effects of accidental explosions. Washington, DC: Unified Facilities Criteria (UFC) Manual Number: US Department of Defense.
  • UFC 3-340-01. (2002). Design and analysis of hardened structures to conventional weapons effects. Washington, DC: Unified Facilities Criteria, Department of Defense.
  • Wiśniewski, D. F., Cruz, P. J. S., Henriques, A. A. R., & Simões, R. A. D. (2012). Probabilistic models for mechanical properties of concrete, reinforcing steel and pre-stressing steel. Structure and Infrastructure Engineering, 8(2), 111–123. doi: 10.1080/15732470903363164

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.