Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 15, 2019 - Issue 9
484
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Shaking table tests of bridge model with friction sliding bearings under bi-directional earthquake excitations

, &
Pages 1264-1278 | Received 25 Aug 2016, Accepted 15 Mar 2019, Published online: 23 May 2019

References

  • Becker, T. C. (2011). Advanced Modeling of the Performance of Structures Supported on Triple Friction Pendulum Bearings (PhD Thesis). University of California, Berkeley, CA, USA.
  • Becker, T. C., & Mahin, S. A. (2012). Experimental and analytical study of the bi‐directional behavior of the triple friction pendulum isolator. Earthquake Engineering & Structural Dynamics, 41(3), 355–373. doi:10.1002/eqe.1133
  • Chopra, A. K. (1995). Dynamics of structures. New Jersey: Prentice Hall.
  • Constantinou, M., Mokha, A., & Reinhorn, A. (1990). Teflon bearings in base isolation II: Modeling. Journal of Structural Engineering, 116(2), 455–474. doi:10.1061/(ASCE)0733-9445(1990)116:2(455)
  • Dao, N. D., Ryan, K. L., Sato, E., & Sasaki, T. (2013). Predicting the displacement of triple pendulum™ bearings in a full-scale shaking experiment using a three-dimensional element. Earthquake Engineering & Structural Dynamics, 42(11), 1677–1695. doi:10.1002/eqe.2293
  • Fenz, D. M. (2008). Development, implementation and verification of dynamic analysis models for multi-spherical sliding bearings (PhD Thesis). State University of New York, Buffalo, USA.
  • Fenz, D. M., & Constantinou, M. C. (2006). Behaviour of the double concave friction pendulum bearing. Earthquake Engineering & Structural Dynamics, 35(11), 1403–1424. doi:10.1002/eqe.589
  • Fenz, D. M., & Constantinou, M. C. (2008a). Spherical sliding isolation bearings with adaptive behavior: Theory. Earthquake Engineering & Structural Dynamics, 37(2), 163–183. doi:10.1002/eqe.751
  • Fenz, D. M., & Constantinou, M. C. (2008b). Spherical sliding isolation bearings with adaptive behavior: Experimental verification. Earthquake Engineering & Structural Dynamics, 37(2), 185–205. doi:10.1002/eqe.750
  • Fenz, D. M., & Constantinou, M. C. (2008c). Modeling triple friction pendulum bearings for response-history analysis. Earthquake Spectra, 24(4), 1011–1028. doi:10.1193/1.2982531
  • Han, Q., Wen, J., Lin, L., & Jia, J. (2014). Experimental and numerical studies on multi-spherical sliding friction isolation bearing. Journal of Vibroengineering, 16(5), 2394–2405.
  • Mander, J. B., Priestley, M. J. N., & Park, R. (1988). Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, 114(8), 1804–1826. doi:10.1061/(ASCE)0733-9445(1988)114:8(1804)
  • Mazzoni, S., McKenna, F., Scott, M. H., & Fenves, G. L. (2006). Open system for earthquake engineering simulation (OpesSees). OpenSees command language manual. Berkeley, CA: Pacific Earthquake Engineering Research Center. University of California.
  • Menegotto, M., & Pinto, P. E. (1973). Method of analysis for cyclically loaded reinforced concrete plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending. In IABSE Symposium on the Resistance and Ultimate Deformability of Structures Acted on by Well-Defined Repeated Loads, Lisbon.
  • Ministry of Transport of the People's Republic of China (MOT). (1996). Standard drawings of highway bridge: JT/GQB 008-96. Beijing: China Communications Press.
  • Mokha, A., Constantinou, M. C., Reinhorn, A. M., & Zayas, V. A. (1991). Experimental study of friction-pendulum isolation system. Journal of Structural Engineering, 117(4), 1201–1217. doi:10.1061/(ASCE)0733-9445(1991)117:4(1201)
  • Morgan, T. A., & Mahin, S. A. (2011). The use of innovative base isolation systems to achieve complex seismic performance objectives (PEER Report 2011/06). Berkeley, CA: Pacific Earthquake Engineering Research Center. University of California.
  • Naeim, F., & Kelly, J. M. (1999). Design of seismic isolated structures: from theory to practice. New York: John Wiley & Sons.
  • Ray, T., Sarlis, A. A., Reinhorn, A. M., & Constantinou, M. C. (2013). Hysteretic models for sliding bearings with varying frictional force. Earthquake Engineering & Structural Dynamics, 42(15), 2341–2360. doi:10.1002/eqe.2373
  • Sarkisian, M., Lee, P., Hu, L., Doo, C., Zayas, V., Constantinou, M., & Bachman, R. (2012). Property verification of triple pendulum seismic isolation bearings. Structures Congress, Chicago.
  • Simo, J., & Hughes, T. (1998). Computational Inelasticity. New York.: Springer
  • Touaillon, J. (1870). U.S. Patent No. 99,973. Washington, DC: U.S. Patent and Trademark Office.
  • Tsai, C. S., Chiang, T. C., & Chen, B. J. (2003). Finite element formulations and theoretical study for variable curvature friction pendulum system. Engineering Structures, 25(14), 1719–1730. doi:10.1016/S0141-0296(03)00151-2
  • Tsai, C. S., Chiang, T. C., & Chen, B. J. (2005). Experimental evaluation of piecewise exact solution for predicting seismic responses of spherical sliding type isolated structures. Earthquake Engineering & Structural Dynamics, 34(9), 1027–1046. doi:10.1002/eqe.430
  • Tsopelas, P., Constantinou, M. C., Kim, Y. S., & Okamoto, S. (1996). Experimental study of FPS system in bridge seismic isolation. Earthquake Engineering & Structural Dynamics, 25(1), 65–78. doi:10.1002/(SICI)1096-9845(199601)25:1<65::AID-EQE536>3.0.CO;2-A
  • Tsopelas, P., Constantinou, M. C., Okamoto, S., Fujii, S., & Ozaki, D. (1996). Experimental study of bridge seismic sliding isolation systems. Engineering Structures, 18(4), 301–310. doi:10.1016/0141-0296(95)00147-6
  • Zayas, V. A., Low, S. S., & Mahin, S. A. (1990). A simple pendulum technique for achieving seismic isolation. Earthquake Spectra, 6(2), 317–333. doi:10.1193/1.1585573

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.