Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 15, 2019 - Issue 9
292
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Surrogate modelling to enable structural assessment of collision between vertical concrete dry casks

&
Pages 1137-1150 | Received 20 Jun 2018, Accepted 30 Jan 2019, Published online: 28 May 2019

References

  • Bakhtiary, E., & Gardoni, P. (2016). Probabilistic seismic demand model and fragility estimates for rocking symmetric blocks. Engineering Structures, 114, 25–34. doi:10.1016/j.engstruct.2016.01.050
  • Bhat, R., Darestani, Y. M., Shafieezadeh, A., Meliopoulos, A., & DesRoches, R. (2018). Resilience assessment of distribution systems considering the effect of hurricanes. In IEEE/PES Transmission and Distribution Conference and Exposition (T&D).
  • Bjorkman, G. S. (2011). The possible influence of ISFSI Pad flexibility on the sliding response of casks at North Anna due to the Earthquake of August 23, 2011. Retrieved from http://www.nrc.gov/docs/ML1131/ML113120575.pdf
  • BNG Fuel Solutions Corporation (2005). Final safety analysis report for the VSC-24 ventilated storage cask system. Campbell, CA.
  • Box, G. E. P., & Wilson, K. B. (1951). On the experimental designs for exploring response surfaces. The Annals of Mathematical Statistics, 13, 1–45.
  • Braverman, J. I., Morante, R. J., Xu, J., Hofmayer, C. H., & Shaukat, S. K. (2003). Impact analysis of spent fuel dry casks under accidental drop scenarios. Retrieved from https://www.bnl.gov/isd/documents/25144.pdf
  • Champiri, M. D., Mohammadipour, A., Mousavi, R., Willam, K. J., & Gencturk, B. (2017). Added mass effect for tip-over analysis of dry cask composite structures at two different scales. Annals of Nuclear Energy, 110, 126–139. doi:10.1016/j.anucene.2017.06.028
  • Chorzepa, M., Saeidpour, A., Christian, J., & Durham, S. (2016). Hurricane vulnerability of coastal bridges using multiple environmental parameters. International Journal of Safety and Security Engineering, 6(1), 10–18. doi:10.2495/SAFE-V6-N1-10-18
  • Chowdhury, A. H., Caseres, L., Pan, Y.-M., Oberson, G., & Jones, C. (2016). Expert panel workshop on concrete degradation in spent nuclear fuel dry cask storage systems – summary Report. Retrieved from https://www.nrc.gov/docs/ML1610/ML16103A218.pdf
  • Dreier, G., Diersch, R., Hüggenberg, R., Spilker, H., & Bantle, S. (1997). Benchmark calculations for mechanical stresses upon a transport cask. Nuclear Engineering and Design, 176(3), 207–214. doi:10.1016/S0029-5493(97)00143-X
  • Ebad Sichani, M., Hanifehzadeh, M., Padgett, J. E., & Gencturk, B. (2019). Probabilistic analysis of vertical concrete dry casks subjected to tip-over and aging effects. Nuclear Engineering and Design, 343, 232–247. doi:10.1016/j.nucengdes.2018.12.003
  • Ebad Sichani, M., & Padgett, J. E. (2017a). Probabilistic seismic assessment of dry storage casks based on top facet displacement. 12th International Conference on Structural Safety & Reliability, Vienna, Austria.
  • Ebad Sichani, M., & Padgett, J. E. (2017b). Sensitivity analysis of seismic performance of dry cask structures. Paper presented at the 16th World Conference on Earthquake Engineering, Santiago, Chile.
  • Ebad Sichani, M., Padgett, J. E., & Bisadi, V. (2018). Probabilistic seismic analysis of concrete dry cask structures. Structural Safety, 73C, 87–98. doi: doi:10.1016/j.strusafe.2018.03.001
  • Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics, 19(1), 1–67. doi:10.1214/aos/1176347963
  • Gardoni, P., Der Kiureghian, A., & Mosalam, K. M. (2002). Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations. Journal of Engineering Mechanics, 128(10), 1024–1038. doi:10.1061/(ASCE)0733-9399(2002)128:10(1024)
  • Ghosh, J., Padgett, J. E., & Dueñas-Osorio, L. (2013). Surrogate modeling and failure surface visualization for efficient seismic vulnerability assessment of highway bridges. Probabilistic Engineering Mechanics, 34, 189–199. doi:10.1016/j.probengmech.2013.09.003
  • Hancock, J., & Mackenzie, A. (1976). On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states. Journal of the Mechanics and Physics of Solids, 24(2–3), 147–160. doi:10.1016/0022-5096(76)90024-7
  • Hanifehzadeh, M., Gencturk, B., Attar, A., & Willam, K. (2017). Multi-hazard performance of reinforced concrete dry casks subjected to chloride attack and tip-over impact. Annals of Nuclear Energy, 108, 10–23. doi:10.1016/j.anucene.2017.04.032
  • Hanifehzadeh, M., Gencturk, B., & Mousavi, R. (2018). A numerical study of spent nuclear fuel dry storage systems under extreme impact loading. Engineering Structures, 161(1), 68–81. doi:10.1016/j.engstruct.2018.01.068
  • Hanifehzadeh, M., Gencturk, B., & Willam, K. (2017). Dynamic structural response of reinforced concrete dry storage casks subjected to impact considering material degradation. Nuclear Engineering and Design, 325, 192–204. doi:10.1016/j.nucengdes.2017.10.001
  • Holtec International. (2006). Holtec International Final Safety Analysis Report for the HI-STORM 100 Cask System. Retrieved from https://www.nrc.gov/docs/ML0632/ML063240599.pdf
  • Huang, C.-C., & Wu, T.-Y. (2009). A study on dynamic impact of vertical concrete cask tip-over using explicit finite element analysis procedures. Annals of Nuclear Energy, 36(2), 213–221. Retrieved from http://www.sciencedirect.com/science/article/pii/S0306454908002909 doi:10.1016/j.anucene.2008.11.014
  • Jekabsons, G. (2016). ARESLab: Adaptive regression splines toolbox for Matlab/Octave. Retrieved from http://www.cs.rtu.lv/jekabsons/
  • Johnson, S. (2015). Degradation mechanisms and inspection techniques for concrete structures in dry storage systems for spent nuclear fuel. Report 3002005508, Electric Power Research Institute, Palo Alto, CA.
  • Kameshwar, S., & Padgett, J. E. (2014). Multi-hazard risk assessment of highway bridges subjected to earthquake and hurricane hazards. Engineering Structures, 78, 154–166. doi:10.1016/j.engstruct.2014.05.016
  • Khosravikia, F., Clayton, P., & Nagy, Z. (2018). Artificial neural network‐based framework for developing ground‐motion models for natural and induced earthquakes in Oklahoma, Kansas, and Texas. Seismological Research Letters, 90(2A), 604–613. doi: https://doi.org/10.1785/0220180218
  • Kim, D. H., Seo, K. S., Lee, J. C., Cho, C. H., Jang, H. K., & Choi, B. I. (2006). A test for verifying a tip-over analysis of a dry storage cask. Korean Radioactive Waste, 4(3), 245–253.
  • Kim, K.-S., Kim, J.-S., Choi, K.-S., Shin, T.-M., & Yun, H.-D. (2010). Dynamic impact characteristics of KN-18 SNF transport cask–Part 1: An advanced numerical simulation and validation technique. Annals of Nuclear Energy, 37(4), 546–559. doi:10.1016/j.anucene.2009.12.023
  • Klymyshyn, N., Karri, N., Adkins, H., & Hanson, B. (2013). Structural sensitivity of dry storage canisters. Richland, WA: Pacific Northwest National Laboratory.
  • Klymyshyn, N. A., Adkins, H. E., Bajwa, C. S., & Piotter, J. M. (2012). Package impact models as a precursor to cladding analysis. Journal of Pressure Vessel Technology, 135(1), 011601. doi:10.1115/1.4007469
  • Lee, Y.-S., Ryu, C.-H., Kim, H.-S., & Choi, Y.-J. (2005). A study on the free drop impact of a cask using commercial FEA codes. Nuclear Engineering and Design, 235(20), 2219–2226. doi:10.1016/j.nucengdes.2005.03.009
  • Lee, Y., & Kim, Y. (1995). Dynamic structural behaviors of a shipping container under drop impact loading. Transactions of the 13th International Conference on Structural Mechanics in Reactor Technology, Vol. 4.
  • Lior, R. (2014). Data mining with decision trees: theory and applications. Singapore: World Scientific.
  • Livermore Software Technology Corporation. (2007). LS-DYNA keyword user’s manual version 971.
  • Luk, V., Spencer, B., Lam, I., & Dameron, R. (2005). Parametric evaluation of seismic behavior of freestanding spent fuel dry cask storage systems (NUREG/CR-6865, SAND2004-5794P). Retreived from: https://www.nrc.gov/docs/ML0511/ML051120008.pdf
  • McCreesh, G., Duvall, A., & Sievwright, R. (1995). Drop testing and impact analysis of 1/3 scale reusable shielded transport containers for intermediate-level radioactive waste. Nuclear Energy, 34(6), 347–353.
  • McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21(2), 239–245. doi:10.2307/1268522
  • Mitchell, T. M. (1997). Machine learning. New York: McGraw-Hill.
  • Morgan, J. N., & Sonquist, J. A. (1963). Problems in the analysis of survey data, and a proposal. Journal of the American Statistical Association, 58(302), 415–434. doi:10.1080/01621459.1963.10500855
  • Murray, Y. D. (2007). Users manual for LS-DYNA concrete material model 159. McLean, VA: U.S. Department of Transportation Federal Highway Administration.
  • NAC International. (2009). MAGNASTOR Final Safety Analysis Report.
  • Petkevich, P., Abramov, V., Yuremenko, V., Piminov, V., Makarov, V., & Afanasiev, A. (2014). Simulation of the nuclear fuel assembly drop test with LS-Dyna. Nuclear Engineering and Design, 269, 136–141. doi:10.1016/j.nucengdes.2013.08.019
  • Rashid, Y., Nickell, R., James, R., & Zhang, L. (1997). Validation of EPRI methodology of analysis of spent fuel cask drop and tip-over events. EPRI TR-108760, Electric Power Research Institute.
  • Ravishanker, N., & Dey, D. K. (2001). A first course in linear model theory. Boca Raton, FL: CRC Press.
  • Rice University Center for Research Computing. (2018). Getting started on DAVinCI. Retrieved from https://docs.rice.edu/confluence/display/CD/Getting+Started+on+DAVinCI.
  • Rosner, R., & Lordan, R. (2014). Why America should move toward dry cask consolidated interim storage of used nuclear fuel. Bulletin of the Atomic Scientists, 70(6), 48–62. doi:10.1177/0096340214555107
  • Saeidpour, A., Chorzepa, M. G., Christian, J., & Durham, S. (2018). Parameterized fragility assessment of bridges subjected to hurricane events using metamodels and multiple environmental parameters. Journal of Infrastructure Systems, 24(4), 04018031. doi:10.1061/(ASCE)IS.1943-555X.0000442
  • Shah, M. (2005). HI-storm dry storage cask tip-over event structural response. Proceedings of 18th International Conference on Structural Mechanics in Reactor Technology, Beijing, China.
  • Simpson, T. W., Poplinski, J., Koch, P. N., & Allen, J. K. (2001). Metamodels for computer-based engineering design: survey and recommendations. Engineering with Computers, 17(2), 129–150. doi:10.1007/PL00007198
  • Teng, T., Chu, Y., Chang, F., Chin, H., & Lee, M. (2003). The dynamic analysis of nuclear waste cask under impact loading. Annals of Nuclear Energy, 30(14), 1473–1485. doi:10.1016/S0306-4549(03)00080-X
  • The MathWorks Inc. (2015). MATLAB and statistics toolbox release 2015b. Natick, MA.
  • U.S. Nuclear Regulatory Commission (2000). Standard review plan for spent fuel dry storage facilities.
  • U.S. Nuclear Regulatory Commission (2007). A pilot probabilistic risk assessment of a dry cask storage system at a nuclear power plant. Washington, DC. Retrieved from http://www.nrc.gov/docs/ML0713/ML071340012.pdf
  • Vapnik, V. (1998). Statistical learning theory. New York: Wiley.
  • Witte, M. C., Chen, T., Murty, S., Tang, D., Mok, G., Fischer, L. E., & Carlson, R. W. (1997). Evaluation of impact tests of solid steel billet onto concrete pads, and application to generic ISFSI storage cask for tipover and side drop.
  • Wu, T.-Y., Lee, H.-Y., & Kang, L.-C. (2012). Dynamic response analysis of a spent-fuel dry storage cask under vertical drop accident. Annals of Nuclear Energy, 42, 18–29. doi:10.1016/j.anucene.2011.12.016
  • Yoon, J.-H., Choi, W.-S., Lee, S.-H., & Seo, K.-S. (2011). Arising technical issues in the development of a transportation and storage system of spent nuclear fuel in Korea. Nuclear Engineering and Technology, 43(5), 413–420. doi: doi:10.5516/NET.2011.43.5.413
  • Zhang, J., Xie, Y., & Wu, G. (2019). Seismic responses of bridges with rocking column-foundation: A dimensionless regression analysis. Earthquake Engineering & Structural Dynamics, 48(1), 152–170.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.