Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 15, 2019 - Issue 10
217
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Destructive and non-destructive evaluation of reinforced concrete dry casks affected by alkali-silica reactivity damage

, , &
Pages 1404-1418 | Received 21 Sep 2018, Accepted 05 Mar 2019, Published online: 08 Jun 2019

References

  • ASTM (2004). Standard test method for splitting tensile strength of cylindrical concrete specimens, ASTM C496/C496M-11. West Conshohocken, PA: American Society of Testing Materials (ASTM).
  • ASTM (2013). Standard test method for rebound number of hardened concrete, ASTM C805/C805M-13a. West Conshohocken, PA: American Society of Testing Materials (ASTM).
  • ASTM (2014). Standard test method for static modulus of elasticity and Poisson’s ratio of concrete in compression, ASTM C469/C469M-14. West Conshohocken, PA: American Society of Testing Materials (ASTM).
  • ASTM (2016). Standard test method for compressive strength of cylindrical concrete specimens, ASTM C39/C39M-16b. West Conshohocken, PA: American Society of Testing Materials (ASTM).
  • ASTM (2016). Standard test method for density (unit weight), yield, and air content (gravimetric) of concrete, ASTM C138/C138M-16a. West Conshohocken, PA: American Society of Testing Materials (ASTM).
  • Attar, A., Gencturk, B., Hanifehzadeh, M., & Willam, K. (2016). Accelerated aging of concrete dry cask storage systems for nuclear waste. Journal of Advanced Concrete Technology, 14(6), 299–310. doi:10.3151/jact.14.299
  • Attoh-Okine, N., & Atique, F. (2006). Service life assessment of concrete with ASR and possible mitigation. Newark, Delaware: Delaware Center for Transportation, University of Delaware.
  • BASF (2018). MasterGlenium - High-range water-reducing concrete admixtures. Available from: https://www.master-builders-solutions.asiapacific.basf.com/en-asia/products/masterglenium, Accessed on May 30, 2019.
  • BASF (2018). MasterPozzolith - Ready-to-use water-reducing admixtures for lower strength concrete. Available from: https://www.master-builders-solutions.basf.com/en-basf/products/masterpozzolith, Accessed on May 30, 2019.
  • Carter, J. T. (2015). Consolidated interim storage facility design concepts in the United States. In IAEA International Conference on the Management of Spent Fuel from Nuclear Power Reactors, Vienna, Austria, June 2015.
  • CBC/Radio-Canada (2018). Quebec to spend $1.9B on lone nuclear power plant. Available from http://www.cbc.ca/news/canada/montreal/quebec-to-spend-1-9b-on-lone-nuclear-power-plant-1.741158, Accessed on May, 2018.
  • Champiri, M. D., Mohammadipour, A., Mousavi, R., Willam, K. J., & Gencturk, B. (2017). Added mass effect for tip-over analysis of dry cask composite structures at two different scales. Annals of Nuclear Energy, 110, 126–139. doi:10.1016/j.anucene.2017.06.028
  • Chénier, J.-O., Komljenovic, D., Gocevski, V., Picard, S., & Chrétien, G. (2012). An approach regarding aging management program for concrete containment structure at the Gentilly-2 nuclear power plant. In Proceeding of 33rd Annual Conference of the Canadian Nuclear Society, Saskatoon, Canada, June 2012.
  • Diamond, S., & Ong, S. (1994). Effects of added alkali hydroxides in mix water on long-term SO42− concentrations in pore solution. Cement and Concrete Composites, 16(3), 219–226. doi:10.1016/0958-9465(94)90019-1
  • Dunant, C. F., & Scrivener, K. L. (2012). Effects of uniaxial stress on alkali–silica reaction induced expansion of concrete. Cement and Concrete Research, 42(3), 567–576. doi:10.1016/j.cemconres.2011.12.004
  • Ebad Sichani, M., & Padgett, J. E. (2017). Sensitivity analysis of seismic performance of dry cask structures. In 16th World Conference on Earthquake, Santiago, Chile, January 2017.
  • Ebad Sichani, M., Padgett, J. E., & Bisadi, V. (2018). Probabilistic seismic analysis of concrete dry cask structures. Structural Safety, 73, 87–98. doi:10.1016/j.strusafe.2018.03.001
  • Fan, S., & Hanson, J. M. (1998). Length expansion and cracking of plain and reinforced concrete prisms due to alkali-silica reaction. Materials Journal, 95(4), 480–487.
  • Gao, X. X., Multon, S., Cyr, M., & Sellier, A. (2013). Alkali–silica reaction (ASR) expansion: Pessimum effect versus scale effect. Cement and Concrete Research, 44, 25–33. doi:10.1016/j.cemconres.2012.10.015
  • Giaccio, G., Zerbino, R., Ponce, J., & Batic, O. R. (2008). Mechanical behavior of concretes damaged by alkali-silica reaction. Cement and Concrete Research, 38(7), 993–1004. doi:10.1016/j.cemconres.2008.02.009
  • Giannini, E. R., Folliard, K. J., Zhu, J., Bayrak, O., Kreitman, K., Webb, Z., & Hanson, B. (2013). Non-destructive evaluation of in-service concrete structures affected by alkali-silica reaction (ASR) or delayed ettringite formation (DEF)—Final Report, Part I. College Station, TX: Texas A&M Transportation Institute, The Texas A&M University System.
  • Hanifehzadeh, M., Gencturk, B., Attar, A., & Willam, K. (2017). Multi-hazard performance of reinforced concrete dry casks subjected to chloride attack and tip-over impact. Annals of Nuclear Energy, 108, 10–23. doi:10.1016/j.anucene.2017.04.032
  • Hanifehzadeh, M., Gencturk, B., & Mousavi, R. (2018). A numerical study of spent nuclear fuel dry storage systems under extreme impact loading. Engineering Structures, 161, 68–81. (1):doi:10.1016/j.engstruct.2018.01.068
  • Hanifehzadeh, M., Gencturk, B., & Willam, K. (2017). Dynamic structural response of reinforced concrete dry storage casks subjected to impact considering material degradation. Nuclear Engineering and Design, 325, 192–204. doi:10.1016/j.nucengdes.2017.10.001
  • IAEA (2016). Ageing management of concrete structures in nuclear power plants, IAEA Nuclear Energy Series. Vienna, Austria: International Atomic Energy Agency.
  • Jones, A., & Clark, L. (1998). The effects of ASR on the properties of concrete and the implications for assessment. Engineering Structures, 20(9), 785–791. doi:10.1016/S0141-0296(97)00125-9
  • Lee, S., Cho, S.-S., Jeon, J.-E., Kim, K.-Y., & Seo, K.-S. (2014). Impact analyses and tests of concrete overpacks of spent nuclear fuel storage casks. Nuclear Engineering and Technology, 46(1), 73–80. doi:10.5516/NET.06.2013.005
  • Livermore Software Technology Corporation (2007). LS-DYNA keyword user’s manual version 971.
  • Malhotra, V. M., & Carino, N. J. (2003). Handbook on nondestructive testing of concrete (2nd ed.). CRC Press.
  • Marzouk, H., & Langdon, S. (2003). The effect of alkali-aggregate reactivity on the mechanical properties of high and normal strength concrete. Cement and Concrete Composites, 25(4–5), 549–556. doi:10.1016/S0958-9465(02)00094-X
  • MathWorks (2018). MATLAB R2017a. MathWorks, Inc.
  • Monette, L., Gardner, N., & Grattan-Bellew, P. (2002). Residual strength of reinforced concrete beams damaged by alkali-silica reaction—examination of damage rating index method. Materials Journal, 99(1), 42–50.
  • Murazumi, Y., Watanabe, Y., Matsumoto, N., Mitsugi, S., Takiguchi, K., & Masuda, Y. (2005). Study on the influence of alkali-silica reaction on structural behavior of reinforced concrete members. In Proceedings of 18th International Conference on Structural Mechanics in Reactor Technology, Beijing, China, August 2005.
  • National Instrument (2018). CompactDAQ. Available from http://www.ni.com/en-us.html.
  • Naus, D. J. (2007). Primer on durability of nuclear power plant reinforced concrete structures-A review of pertinent factors. Oak Ridge, TN: Oak Ridge National Lab. (ORNL).
  • Nikon (2016). Non-contact measurement system manufacturer. Available from http://www.nikonmetrology.com/en_US/Products/Portable-Measuring/Optical-CMM/K-Series-Optical-CMM, Accessed on December 2016.
  • Saint-Pierre, F., Rivard, P., & Ballivy, G. (2007). Measurement of alkali–silica reaction progression by ultrasonic waves attenuation. Cement and Concrete Research, 37(6), 948–956. doi:10.1016/j.cemconres.2007.02.022
  • Sargolzahi, M., Kodjo, S. A., Rivard, P., & Rhazi, J. (2010). Effectiveness of nondestructive testing for the evaluation of alkali–silica reaction in concrete. Construction and Building Materials, 24(8), 1398–1403. doi:10.1016/j.conbuildmat.2010.01.018
  • Shirai, K., Namba, K., & Saegusa, T. (2009). Safety analysis of dual purpose metal cask subjected to impulsive loads due to aircraft engine crash. Journal of Power and Energy Systems, 3(1), 72–82. doi:10.1299/jpes.3.72
  • Smaoui, N., Bérubé, M.-A., Fournier, B., Bissonnette, B., & Durand, B. (2004). Evaluation of the expansion attained to date by concrete affected by alkali–silica reaction. Part I: Experimental study. Canadian Journal of Civil Engineering, 31(5), 826–845. doi:10.1139/l04-051
  • Swamy, R. N. (2002). The alkali-silica reaction in concrete. CRC Press.
  • U.S. NRC (2017). Conditions for spent fuel storage cask renewal. Available from https://www.nrc.gov/reading-rm/doc-collections/cfr/part072/part072-0240.html
  • U.S. NRC (2017). Special NRC oversight at Seabrook nuclear power plant: Concrete degradation. Available from https://www.nrc.gov/reactors/operating/ops-experience/concrete-degradation.html.
  • U.S. NRC (2018). List of approved spent fuel storage casks. Available from https://www.nrc.gov/reading-rm/doc-collections/cfr/part072/part072-0214.html, Accessed on May 2018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.